TECHNICAL MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM

JUNE 2018

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed-out version.
  • Consistent accuracy (CA) applies to ALL aspects of the marking guideline.
  • Assuming answers/values to solve a problem is NOT acceptable.

QUESTION 1

1.1

111010
- 10101
1000012

??Accurate value
(2)

1.2

1.2.1

x(x - 3) = 0
x = 0 or x = 3

??Each correct x-value

(2)

 

1.2.2

x2 + 3x +1 = 0 (correct to ONE decimal)
x = - b ± √b2 - 4ac
               2a

x = -3 ± √(3)2 - 4(1)(1)  (-1 Mark for incorrect rounding)
                  2(1)  
x ≈ - 0, 4 or x  - 2,6

OR

a

? Formula

?Substitution

? x ≈ -0,4

? x ≈ -2,6

? Each x value

? Expansion

?Quadratic factors

? x ≈ -0,4

? x ≈ -2,6

(4)

  1.2.3

x2 + 3x + 2 < 0
(x+2) (x+1) < 0
Critical values : x = - 1 or x = -2

2

=>
-2 < x < -1

?Standard form

?Critical values

?Notation

?Both values

OR

? ? ?

-2 < x < -1

Accurate answer

? -2< x

x < -1

(4)

1.3 

y = x2–1 …………. (1) and   y = x+1.................... (2)
x2–1 = x+1 x2x – 2 =0
(x +1) (x–2) = 0
x= 2 or x = –1
y = 3 or y = 0

?Equating (1) and (2)

?Standard form

?Factors

?Both x-values

?Both y-values

(5)

1.4

b2 4ac = 0
b2 4.1.4 = 0
b = 4 or b = 4

?Discriminant = 0

?Substitution

??Each value of b

(4)

 [21]

 

QUESTION 2

2.1

2x.21 2x.21
       3.2x

= 2x (2 21
         3.2x
= 3 
   6
= ½ ?

?Prime bases

? Factor 2x

? Factor 2 – 2–1

? ½

(4)

2.2

 1

?Log Rule(numerator)

?Log Rule (denominator)

?Simplification

  loga 5   1 
 2loga 5–2

?Power rule

?Prime factors of 25

?Prime factors of 125

?Power rule (numerator)

?Power rule (denominator)

?Simplification

(5)

2.3
2.3.1

Rabbits = 1000 × 20,05(30)
Rabbits = 2828

?Substitution

?Answer

(2)

2.3.2 8000 = 1000 × 20,05t

8 = 20,05t
0, 05t = log28
t = 60 days

?Substitution

?log form

? t = 60 days

(3)

    [14]

 

QUESTION 3

3.1

   

3.1.1

| Z |= √(2)2  + (1)2
| Z |= √5

?Substitution

?Answer

(2)

3.1.2

 3

?Quadrant

?Point/Coordinates

(2)

3.1.3

tanθ = ½
θ = 26, 57o
θ = 180º 26, 57º = 153, 43º

Accept angles in radians

?tan ratio

?Ref Angle

?Argument

(3)

3.1.4

 | Z |= √5
θ = 153, 43o
z = √5 [cos (153, 43o ) + isin (153, 43o )]

Accept angles in radians
OR

z = √3cis (153, 43o )

??Accurate polar form

(2)

3.2

(x - yi) = –2+ i
              1+ i
x – yi = –2 + i  × 1 – i 
              1 + i     1 – i
x – yi = –2 + 2i +i – i2
                 1 – i2
x – yi = -1 + 3 i
             2     2
∴ x = -1 and y = - 3
          2                2

OR

1(x - yi) + i(x - yi) = –2 + i
x – yi + ix - y (i )2  = –2 + i x – yi + ix+ y = –2 + i
x+ y + ( x – y )i = –2+ i

x+ y = -2.............. (1)
x – y = 1................... (2)

(1)+(2) :

x = -½
and y = - 3
              2

?Simplification

?Conjugate product

?Simplification

? x-value

? y-value

? Multiplication

?Simplification

?Comparing real values and imaginary values

? x-value

? y-value

(5)

[14]

 

QUESTION 4

4.1

  

4.1.1

inorm  = 14% = 0, 035
              4
= 3, 5%quarterly

? Answer

(1)

4.1.2

 4

?Formula

?Substitution

?Interest

(3)

4.1.3

A = 2500(1 + 0, 035)7×4
A = R6550, 43

?Substitution

?Correct i = 0,035 and n = 21

? Value of A

(3)

4.2

 
 5

In A1

i = 0, 08
       12
?n = 24
? i = 0,1 = 0,025
         4
?n = 12
? A1 = R687572,9508
In A2
?n = 8
? A2 =R97 472, 2318
Final Amount R785045,18

(8)

     

[15]

 

QUESTION 5

5.1

      

5.1.1

0 = ( x 3)2  + 4
( x 3)2  = 4
x 3 = ±2
x = 5 or x = 1
A(1; 0) or B(5; 0)

OR
0 = -2 + 6x - 5
0 = (-x +1)(x - 5)
x = 5 or x = 1
A(1; 0) or B(5; 0)

?h(x) =0

?Transposition

?A co-ordinates

?B co-ordinates

?h(x) =0

?Factors

?A coordinates

?B coordinates

(4)

5.1.2

h(x) = -x2 + 6x - 5
dy = -2x + 5
dx
0 = -2x + 6
x = 3
h(3) = (3)2 + 6 (3) - 5
= 4
∴ D(3; 4)

dy
dx?

?Coordinates

(2)

5.1.3

x ∈ [0; 6] OR 0 ≤ x ≤ 6

?0

?6

?Correct notation

(3)

5.1.4

Maximum height = 4 units

?Answer

5.1.5

y-intercept of h = –5
Beams have height of 5 units

?y-intercept

? 5 units

(2)

5.1.6

y ≤ 4 OR y Î (-∞; 4] OR - ∞ < y ≤ 4

? Notation

? Value(s)

(2)

5.1.7

x ∈ [3;5] OR 3 ≤ x ≤ 5

?3

?5

?Correct notation

(3)

5.2

No. The truck height (4,5) is greater than the
bridge height (4 units) and the bridge has cross bars on top.

? No

? Bridge less than truck height

OR Truck height greater than the bridge height

?Cross bar

(3)

5.3 

At F, x = 3

y = – 3+5 =2

FD = D – F
FD = 4 – 2
FD = 2 units

?y-value at F

?Subtracting y-values

? FD

(3)

    [23]

 

QUESTION 6

6.1

  

6.1.1

0 = –2 + 1
       x
x = 2
(2; 0)

?y =0

? Coordinates

(2)

6.1.2

f(x) = 20

y =1

? Value of y

(1)

6.1.3

y=0 for f(x)

x = 0 and y =1 for g(x)

–1 Mark for 1 omitted asymptote

 

?y =0

?x =0 and y=1

(2)

6.2

 6

?Shape of f

? y-intercept of f

? y=1 Asymptote of g

? 1 more point on f

?Shape of g

? 1 more point on g

? x- intercept of g

(7)

6.3

 

6.3.1

x ∈ R, x ≠ 0

?Restriction

?Domain value

(2)

6.3.2

x ∈ (0; +∞ ) OR x > 0

?Correct inequality

(1)

       [15]

 

QUESTION 7

7.1

f (' x)= lim  f ( x+ h) –  f ( x)
         h→0          h

f '(x)= lim –2 ( x+ h)2  – (–2x2 )
        x→0            h

f (x)= lim  –2x2 – 4xh – 2h2 + 2x2
       x→0                 h
f'(x)= lim h (–4x – 2h)
       x→0        h
f '(x)= –4x

?Formula

?Substitution

?Expansion

?Factors

? f '(x)= 4x

(5)

-1 Mark for incorrect notation in 7.1 or 7.2

7.2

y = 2√x 1
                x
y = 2x½ – x-1

dy = x½ + x-2
dx

OR

dy = 1  + 1 
dx   x½   x2

?2x½ 

?x-1

? x½ 

?x-2

7.3

g'(x) = 2x - 2
mtangent = 2(2) 2 = 2
y = 22 2.2 = 0
(2; 0)
y = mx+c
0 = 2.2 + c
c = 4
y = 2x 4

? g'(x)

? mtangent

?(2;0)

? c = 4

? y = 2x 4

(5)

 

 

[14]

 

QUESTION 8

8.1

f (–1) = (–1)3 + 4(–1)2 + (–1) – 6
f (–1) = – 4 ≠ 0
So x+1 is not a factor of f(x) because f (–1) is not equal to 0.

?f (–1) = – 4 ≠ 0

8.2

f (1) = (1)3 + 4(1)2 + (1) - 6 = 0
(x -1) is a factor of f

       1        4         1           -6
1     0        1         5            7
       1        5         6            0

f(x) = (x–1) (x2+5x+6)
f(x) = (x–1) (x+3) (x+2)
x =1 or x = –3 or x = –2
(1;0), (–2;0), (–3;0)

? f(x) =0

? First linear factor

?Quadratic factor

?Factors of x2+5x+6

?All coordinates

(5)

8.3

y-intercept = –6

?Answer

(1)

8.4

f '(x)= 3x2 + 8x+1
0 = 3x2 + 8x+1
x= 8 ± √64 4.3.1
               2.3
x = 0,13 or x = 2, 54
(0,13; 6, 06) or (2, 54; 0,89)

f '(x) = 0

?x- values

(-0,13; -6,06)

(-2,54; 0,89)

OR

Y – coordinates of TP

? y= -6, 06

? y= 0,89

8.5 

 7

?Shape

?x-intercepts

?Max. Turning point

?Min. Turning point

? y-intercepts

(5)

 

 

[16]

 

QUESTION 9

9.1

  

9.1.1

Surface Area = 2(2x.x +2x.h + x.h)
4x2 + 4xh + 2xh = 120
6x.h = 120 – 4x22

∴ h 120 - 4x2
            6x
h 202x
       x     3

? Formula

?Substitution

? Simplification

? h

(3)

9.1.2

V = l.b.h
8

?V = l.b.h

?Substitution

(2)

9.1.3

dV = 40 – 4x2
dx
0 = 10 – x2
x = √10 or x ≠ - √10

? dV
   dx
? dV = 0
    dx

x = 10 ≈ 3,16 cm3

(3)

9.2  

T = t3 - 9t 2 + 50t - 66
dT = 3t 2 -18t + 50
dt
dT = 3(5)2 -18(5) + 50
dt
dT = 35º C.s-1
dt

? 3t 2 -18t + 50

?Substitution by 5

dT =35 C.s-1
dt? 

(3)

   

 

[11]

 

QUESTION 10

10.1

 

9 

? x3

? -2
      2

? c

10.2

 10

?Integration expression

?Simplification

?Substitution by 1 and 0

? 1 square units
   6

(4)

    [7]

TOTAL:150

Last modified on Friday, 13 August 2021 08:13