TECHNICAL MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
SEPTEMBER 2018
QUESTION 1 | ||||||||
1.1 | 1.1.1 | x(x–3) | ? x = 0 | (2) | ||||
1.1.2 | 3x2 – 2 x – 1 0 = 0 (-1 Mark for incorrect rounding) | ?Formula | (4) | |||||
1.1.3 | 2x2 – 7 x + 3 ≥ 0 | ?Critical values | (3) | |||||
1.2 | x2 - 4 | ?Factors ?Substitution ? 2 x 1012 | (3) | |||||
1.3 | 2y + x = 3........................................ (1) | ?Substitution | (6) | |||||
OR | OR | (6) | ||||||
1.4 | b2 – 4ac <0 | ? b2–4ac < 0 | (3) | |||||
[21] |
QUESTION 2 | ||||
2.1 | ||||
2.1.1 | √– 18.√– 12 = √– 32.2.√– 22.3 | ?Prime factors | (3) | |
OR | OR ?Prime factors ? i =√1 ? 6i | |||
2.1.2 | log 6 + 2 log 2 0 – log 3 – 3 log 2 = 2 | ?Power law ?Addition law ?Subtraction law ?Same base law ?2 | (5) | |
2.2 | ||||
2.2.1 | ?Power rule | (4) | ||
2.2.2 | 5 = (1/5) x-2 5 = (5 -1)x - 2 5 = 5-x-2 1 = -x + 2 x = 1 | ?Substitute 5 ?Powers with base 5 ?Same base rule ?x = 1 | ||
OR 5 = (1/5) x-2 5 = 1 5 x - 2x 5 x-2+1 = 1 5 x-2+1= 50 x - 1 = 0 x = 1 | OR ?Substitute 5 | (4) | ||
2.2.3 | 4 log2x – 1 = log28 | ?1 = log22 ?Simplification ?Equal base logs ?x = 2 | (4) | |
OR 4 log2x – 1 = log23 | OR | |||
[20] |
QUESTION 3 | ||||
3.1 | 3.1.1 | z5 = z1 + z2 | ?-1 Real part | (2) |
3.1.2 | z6 = z5 x z3 | ?Expansion | (2) | |
3.1.3 | Output = z 6 = 3 - 5i = 6 - 3i - 10i + 5i 2 | ?Conjugate product ?Expansion ?Simplification 1 - 13i | (4) | |
3.2 | 3.2.1 | |Output| = = 2.61 | ?Substitution | (2) |
3.2.2 | ?Correct quadrant | (2) | ||
3.2.3 | No, the learner did not manage to cut out a circular piece, because the modulus of the output is less than 5 and the quadrant of the argument of the output is in the fourth quadrant; so a square was cut. | ?Conclusion | (2) | |
[14] |
QUESTION 4 | ||||
4.1 | 4.1.1 | A = P( 1 - i )n Rate = 3,6 % | ?Formula | (4) |
4.1.2 | A = P (1 - i) n | ?Substitute A and i | (3) | |
4.2 | 4.2.1 | 18% of R600 000 = R108 000 OR Percentage loaned = 100% - 18% | ?11,9% of R600 000 OR | (2) |
4.2.2 | A = P (1 + i )n | ?Formula | (4) | |
[13] |
QUESTION 5 | |||
5.1 | q =2 | ?Accurate answer | (1) |
5.2 | 0 = a + 2 | ?Substitution | (2) |
5.3 | x = 0 and y =2 | ?Horizontal asymptote | (2) |
5.4 | x ∈ R , but x ≠ 0 o r x ∈ ( - ∞ ; 0 ) ∪ ( 0 ; ∞) | ?Excluding x =0 | (2) |
[7] | |||
QUESTION 6 | |||
6.1 | A (–2; 0) and B(2; 0) | ? A (–2; 0) | (2) |
6.2 | 2 = 20 + q | ?q =1 | (1) |
6.3 | m = 0 - 2 = -1 | ?m = - x | (2) |
6.4 | - 73 < x < 0 OR x ∈ (-73 ;0) | ?Notation | (2) |
[7] |
QUESTION 7 | |||
7.1 | f (x) = - (x - 2) 2 + 40 = - (x - 2) 2 + 4 OR 0 = - ( x - 2) + 4 OR 0 = - ( x - 2)2 + 4 | ? f ( x ) = 0 OR ? x = 4 o r x = 0 OR ? x = 4 o r x = 0 | (3) |
7.2 | f ( x ) = - ( x - 2 ) 2 + 4 | ? y = 0 | (1) |
7.3 | (2;4) | ?Each coordinate | (2) |
7.4 | ?Shape | (4) | |
7.5 | y < 4 o r y ∈ ( - ∞ ; 4 ) | ?Accurate answer | (1) |
7.6 | (3;3) | ?x-coordinate | (2) |
[13] |
QUESTION 8 | ||||
8.1 | f (1) = 2(1) 2 + (1) - 1 = 2 | ?f (1) | (5) | |
8.2 | f (x) = 3x | ?Formula | (4) | |
-1 Mark for incorrect notation in 8.2 or 8.3 | ||||
8.3 | 8.3.1 | 3x - 2y = √x | ?y = 3x -√x | (4) |
8.3.2 | y = 6 - 4 + 1 3√x x4 y = 6 - 4 + 1 x1/3 x4 y = 6 - 4x1/3 + x-4 dy = 4 x4/3 - 4x-5 dx 3 dy = 4 - 4 = 4 - 4 dx 3x4/3 x5 33√x4 x5 | ?Exponential form ? 4 x4/3 3x4/3 x5 | (4) | |
8.4 | g '( x ) =2 x + 2 = - 2 x = - 4 g ( - 4 ) = ( - 4 ) 2 + 2 ( - 4 ) - 3 g ( - 4 ) = 5 ( - 4 ; 5 ) | ? g '(x) ? g '(x) = - 2 ? g ( - 4 ) ? (- 4 ; 5) | (4) | |
[21] |
QUESTION 9 | |||
Givenf (x) = (x - 5) (x + 1)2 | |||
9.1 | f (0) = (0 - 5) ((0) + 1)2 = - 5 (0; - 5) | ?(0; - 5) | (1) |
9.2 | f (5) = (5 - 5) (5 + 1) = 0 | ? f (5) = 0 | |
OR 0 = (x - 5) (x + 1) | ? f (x) = 0 | (2) | |
9.3 | f (x) = x3 - 3x2 - 9x - 5 | ? 3x2 - 6 x - 9 ?Factors | (5) |
9.4 | ?Shape | (5) | |
[13] |
QUESTION 10 | ||||||
10.1 | A = 6 + 4t - t 2 | ?Substitute 0 | (2) | |||
10.2 | dA = 4 - 2 t | ? 4 - 2 t | (3) | |||
10.3 | dA = 4 - 2t | ? dA =0 | (2) | |||
10.4 | A = 6 + 4 (2) - 22 | ?Substitution | (2) | |||
[9] |
QUESTION 11 | |||
11.1 | ∫( 2 x - 4 ) dx | ? x2 | (3) |
11.2 | =7,75 square units | ?A1 definite integral formula | (9) |
[12] | |||
TOTAL: | 150 |