PHYSICAL SCIENCES PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
SEPTEMBER 2018
GENERAL GUIDELINES
QUESTION 1:
MULTIPLE-CHOICE QUESTIONS
1.1 C ✓✓ (2)
1.2 A ✓✓ (2)
1.3 D ✓✓ (2)
1.4 A ✓✓(2)
1.5 D✓✓ (2)
1.6 C ✓✓ (2)
1.7 A ✓✓ (2)
1.8 D ✓✓ (2)
1.9 C ✓✓(2)
1.10 D ✓✓ (2)
[20]
QUESTION 2
2.1.1
Mark awarded for arrow and label.
Do not penalise for length of arrows since drawing is not drawn to scale
Any other additional force(s)4/5
If force(s) do not make contact with body.Max. 4/5 (5)
2.1.2 If the resultant/net force acts on an object, the object will accelerate in the direction of the resultant/net force with an acceleration that is directly proportional to the resultant/net force ✓ and inversely proportional to the mass ✓ of the object. (2)
2.1.3 OPTION 1
Fnet = ma ✓
Fnet = Fapp - Tx - f any one
ma = Fapp - Tx - f
5,2a = 46,5 - Tx- 12 ✓
5,2a = 34,5 - Tx . . . . . . . . . . (1)
2a = Tx - 5,1 ✓ . . . . . . . . . . .(2)
a = 4,08m.s-2
2 x (4,08) ✓ = Tx - 5,1
Tx= 13,26
T = 𝑇𝑥
𝑐𝑜𝑠25𝑜
T = 13,26
𝑐𝑜𝑠25𝑜 ✓
T = 14,63 N ✓
OPTION 2
-5,2a = - 46,5 + Tx + 12 ✓
-5,2a = -34,5 + Tx. . . . . (1)
-2a =Tx + 51✓ . . . . . (2)
a = -4,08m.s-2
a = 4,08 m.s-2
(6)
2.2 g = 𝐺𝑀
𝑅2 ✓
g= 6,67 10−11𝑥 6,39 1023
(3,39 106)2 ✓
g = 3,71 m.s-2 ✓ (3)
[16]
QUESTION 3
3.1.1 UPWARD POSITIVE
Δx = viΔt + ½aΔt2 ✓
- (48) ✓= vi x 2,8+ ½ x(- 9,8) x 2,82 ✓
Vi = -3,42
Vi = 3,42 m.s-1 ✓
DOWNWARD POSITIVE
Δx = viΔt + ½ aΔt2 ✓
(48) ✓ = vi x 2,8 + ½ x 9,8 x 2,82 ✓
Vi = 3,42 m.s-1 ✓ (4)
OPTION 1
3.1.2 UPWARD POSITIVE
Vf = Vi + aΔt ✓
Vf = -3,42 + (-9,8) (2,8) ✓
Vf = -30,86 m.s-1
Vf = 30,86 m.s-1 ✓
DOWNWARD POSITIVE
Vf = Vi + aΔt ✓
Vf = 3,42 + (9,8) (2,8) ✓
Vf = 30,86 m.s-1 ✓ (3)
OPTION 2
UPWARD POSITIVE
𝑉𝑓2 = 𝑉𝑖2 + 2aΔx ✓
𝑉𝑓2 = -3,422 + 2 (-9,8) (-48) ✓
𝑉𝑓 = 30,86 m.s-1 ✓
DOWNWARD POSITIVE
𝑉𝑓2 = 𝑉𝑖2 + 2aΔx ✓
𝑉𝑓2 = 3,422 + 2 (9,8) (48)✓
𝑉𝑓 = 30,86 m.s-1 ✓
OPTION 3
UPWARD POSITIVE
Δx = 𝑉𝑓+𝑉𝑖 Δt ✓
2
-(48) = 𝑉𝑓−3,42 x 2,8 ✓
2
𝑉𝑓 = - 30,87
𝑉𝑓 = 30,87 m.s-1 ✓
DOWNWARD POSITIVE
Δ x = 𝑉𝑓+𝑉𝑖 Δt ✓
2
48 = 𝑉𝑓+3,42 x 2,8 ✓
2
𝑉𝑓 = 30,87 m.s-1✓
OPTION 4
EMi = EMi
mgh1 + ½ 𝑚𝑣𝑖2 = mgh + ½ 𝑚𝑣𝑓2 Any one ✓
gh1 + ½ 𝑣𝑖2 = gh2 + ½ 𝑣𝑖2
9,8 x 48 + ½ x 3,422 = 0 + ½ 𝑣𝑖2✓
Vf = 30,86 m.s-1✓
OPTION 5
Fnet Δt = Δp
Fnet Δt = m (vf – vi) Any one
mgΔt = m (vf – vi)
g Δt = vf – vi
9,8 x 2,8 = vf – 3,42 ✓
Vf = 30,86 m.s-1 ✓
3.1.3 UPWARD POSITIVE
𝑉𝑓2 = 𝑉𝑖2 + 2aΔX ✓
0 = 𝑉𝑖2 + 2 (-9,8)(8) ✓
VI = 12,52 m.s-1 upwards. ✓
DOWNWARD POSITIVE
𝑉𝑓2 = 𝑉𝑖2 + 2aΔx ✓
0 = 𝑉𝑖2 + 2 (9,8)(--8) ✓
VI = 12,52 m.s-1
VI = 12,52 m.s-1 upwards. ✓ (3)
3.2 Positive marking from 3.1.1, 3.1.2, 3.1.3
CRITERIA FOR MARKING
(4)
[14]
QUESTION 4
4.1 (𝑚𝐴 + 𝑚𝐵 ) 𝑣𝑖 = 𝑚𝐴 𝑣𝑓𝐴 + 𝑚𝐵 𝑣𝑓𝐵 ✓
(1100 + 800) x( 45 𝑥 1000) ✓= 1100 V𝑓𝐴 + 800 x 9,06 ✓
3600
𝑣𝑓𝐴 = 15,00 m.s-1 ✓ (4)
4.2
4.2.1 The product of the net force acting on an object and the time the net force acts on the object. ✓✓(2)
Positive marking from QUESTION 4.1
4.2.2 OPTION 1
𝐹𝑛𝑒𝑡Δt = m (𝑣𝑓 - 𝑣𝑖 ) ✓
𝐹𝑛𝑒𝑡 x 0,2 ✓= 1100 (0 – (-15)✓
𝐹𝑛𝑒𝑡 = 1,65 x 104 N left ✓
OPTION 2
𝐹𝑛𝑒𝑡Δt = m (𝑣𝑓 - 𝑣𝑖 ) ✓
𝐹𝑛𝑒𝑡 x 0,2 ✓= 1100 (0 – (15) ✓
𝐹𝑛𝑒𝑡 = - 1,65 x 104
𝐹𝑛𝑒𝑡 = 1,65 x 104 N left✓ (4)
[10]
QUESTION 5
5.1
(3)
Mark awarded for arrow and label
Do not penalise for length of arrows since drawing is not drawn to scale
Any other additional force(s)2/3
If force(s) do not make contact with body./Indien krag(te) nie kontak maak met liggaam nie Max/Maks.2/3
5.2
5.2.1 OPTION 1
WFg = Fg ΔX cos𝜃 ✓
WFg = 245 x 9,8 x 12 cos180o ✓
WFg = - 28812 J ✓
OPTION 2
WFg = -ΔEp Any one ✓
WFg = - mg (h2 – h1)
WFg = - 245 x 9,8(12 – 0) ✓
WFg = - 28812 J ✓ (3)
5.2.2 OPTION 1
Fnet = FwindY + Fg + Fapp
Fnet = - (1870 cos 50o ) – (245 x 9,8) + 3000 ✓
Fnet = - 603,01 N Any one ✓
Wnet = Fnet .Δx cos𝜃
Wnet = 603,01 x 12 cos 180o ✓
Wnet = - 7236,12 J ✓
Positive marking from QUESTION 5.2.1
OPTION 2
Wnc = ΔEk + ΔEp Any one✓
WF + Wwind = ΔEk + ΔEp
3000 x 12 cos0o + 1870 x12 cos130o) ✓ = 28812 ✓+ ΔEk
ΔEk = - 7236,15 J
Wnet = - 7236,12 J ✓
Positive marking from QUESTION 5.2.1
OPTION 3
Wnet = WwindY + WFg + Wapp ✓
Wnet = (1870 x 12 cos130o) ✓ - 28812 + (3000 x 12 cos0o) ✓
Wnet = - 7236,15 J ✓ (4)
5.3 The net work done on an object is equal to the change in kinetic energy ✓✓(2)
5.4Wnet = Δ Ek
Wnet = ½ m 𝑉𝑓2 - ½ m 𝑉𝑖2 Any one ✓
-7236,15 = ½ x 245 𝑉𝑓2 - ½ x 245 x 152 ✓
𝑉𝑓 = 12,88 m.s-1 ✓ (3)
[15]
QUESTION 6
6.1
6.1.1 EQUAL TO. ✓There is no relative motion between the observers and the source of sound. ✓(2)
6.1.2 GREATER THAN ✓ (1)
6.1.3
Criteria | Mark |
Wave compressed towards observer 1 | ✓ |
Wave stretched away from observer 2 | ✓ |
Direction of motion indicated | ✓ |
(3)
6.1.4 Doppler effect ✓ (1)
6.1.5 𝑓𝐿 = 𝑉 ± 𝑉𝐿 𝑓𝑆
𝑉±𝑉𝑆
1730 ✓= 340 𝑓𝑆
340−25
𝑓𝑆 = 1602,79 Hz ✓(5)
6.1.6 Star C, ✓ it shows a greater red shift. ✓ (2)
[14]
QUESTION 7
7.1 The electrostatic force between two point charges is directly proportional to the product of the charges ✓and inversely proportional to the square of the
distance between them. ✓ (2)
7.2.1 OPTION 1
Factor = 1920 ✓ = 16
120
OR
Factor = 120 = 1
1920 16
Factor decreases by 16.
Factor by which r increased = √16 = 4 ✓
X + 6 = 4X ✓
X = 2m ✓
OPTION 2
F = 𝑘𝑄1𝑄2
𝑟2 ✓
1920✓= 9𝑥109𝑥𝑄2
𝑋2 ✓
𝑄2 = 1920 𝑥 𝑋2 . . . . . . . . . .. . . . . (1)
9 𝑥 109
120 = 9 𝑥 109 𝑥 𝑄2
(𝑋+6)2 ✓
𝑄2 = 120 𝑥 (𝑋+6)2 . . . . . . . . . . . (2)
9 𝑥 109
1920 𝑥 𝑋2 = 120 𝑥 ( 𝑋+6)2
9 𝑥 109 9 𝑥 109
x = 2m ✓ (5)
Positive marking from QUESTION 7.2.1
7.2.2 OPTION 1
F = 𝑘𝑄1𝑄2
𝑟2 ✓
1920 ✓ = 9 𝑥 109 𝑥 𝑄2
22 ✓
Q = 9,24 x10-4 C ✓
OPTION 2
F = 𝑘𝑄1𝑄2
𝑟2 ✓
120 ✓ = 9 𝑥 109 𝑥 𝑄2
82 ✓
Q = 9,24 x10-4 C✓ (4)
Positive marking from QUESTION 7.2.1
7.3.1
E = 𝑘𝑄
𝑟2 ✓
E1 = 9 𝑥 102 𝑥 9,24 𝑥10−4
2.22 ✓
E1 = 1718181,818 N.C-1 (1,72 X 106 N.C-1) Right
E2 = 9 𝑥 102 𝑥 9,24 𝑥10−4
0.22 ✓
E2 = 207900000 NC-1 (2,08 X 108 N.C-1) Right
Enet = 1718181,818 + 207900000
(1,72 X 106 N.C-1 + 2,08 X 108 N.C-1) ✓
Enet = 2,10 x 108 N.C-1 ✓ (5)
Positive marking from QUESTION 7.3.1
7.3.2 OPTION 1
E = 𝐹
𝑞 ✓
2,10 x 108 = 𝐹
1,6 𝑥 10−19 ✓
F = 3,36 x 10-11 N ✓
OPTION 2
F = 𝑘𝑄1𝑄2
𝑟2 ✓
F= 9 𝑥 109 𝑥 9,24 𝑥 10−4 𝑥 1,6 𝑥 10−19 + 9 𝑥 109 𝑥 9,24 𝑥 10−4 𝑥 1,6 𝑥 10−19
2.22 0.22 ✓
F = 3,35 x 10-11 N ✓(3)
[19]
QUESTION 8
8.1.1 Diagram A represents Exp 2. ✓ (1)
8.1.2 ε = I(R+r) ✓
= 14,4 + 4,8r✓. . . . . . . . (1)
= 20,58 + 1,71r ✓. . . . . .(2)
3,09 r = 6,18
∴r = 2 Ω✓(4)
8.1.3 OPTION 1
ε = I(R+r)
= 4,8 x 2 + 14,4 ✓
= 24 V✓
OPTION 2
ε = I(R+r)
= 1,71 x 2 + 20,5 ✓
= 24 V ✓ (2)
Positive marking from QUESTION 8.2.1 and 8.2.2
8.1.4 OPTION 1
R = 𝑉
𝐼
R = 20,58
1,71
R = 12
R = R1 + R2
12 = 2R1
R = 6 Ω ✓
OPTION 2
R = 𝑉
𝐼
R = 14,4
4,8
R = 3 Ω
1 = 1 + 1
R// R1 R2
1 = 1 + 1 = (R1 + R2 = R)
3 R R
R = 6 Ω ✓
OPTION 3
𝜀 = I (R + r) ✓
24 = 4,8 (R + 2) ✓
R = 3 Ω
1 = 1 + 1
R// R1 R2
1 = 1 + 1 = (R1 + R2 = R)
3 R R
R = 6 Ω ✓
OPTION 4
𝜀 = I (R + r) ✓
24 = 1,71(R + 2) ✓
R = 12,04 Ω
R = R1 + R2
12,04 = 2R✓
R = 6,02 Ω ✓ (4)
8.1.5 OPTION 1
DECREASE, ✓otal external resistance will increase, the current will decrease ✓
P ∝ I2 ✓ therefore power decreases.
OPTION 2
DECREASE, ✓total external resistance will increase, the current will decrease, the lost volt will decrease. ✓
P ∝ 𝑉𝑙𝑜𝑠𝑡2 ✓ therefore power decreases. (3)
8.2 P = I2R ✓
P = 165 x 52 ✓
P = 13 312 W
kWh = 13,312 x 6
kWh = 79,872
Cost = 79,872 x 1,20 ✓
= R95,85 ✓(4)
[18]
QUESTION 9
9.1 9.1.1 Mechanical energy to Electrical energy. ✓✓ (2)
9.1.2 P to Q.✓ (1)
9.2
9.2.1 Vrms = V max ✓
√2
230 = Vmax ✓
√2
Vmax = 325,27 V ✓ (3)
9.2.2
1 = 1 + 1
R// R1 R2
1 = 1 + 1
R// 12 24
R// = 8 Ω
OPTION 1
Paverage = V2rms
R
Paverage = 2302
8
Paverage = 6612,5 W (6,61 kW) ✓ (5)
OPTION 2
Irms = Vrms
R
Vrms = IrmsR
Irms = 230
8
= 28,75 A
Pavg = Vrms.Irms ✓
= (230)(28,75) ✓
= 6612,5 W (6,61 kW) ✓
65OPTION 3
Irms = Vrms
R
Vrms = IrmsR
Irms = 230
8
= 28,75 A
Paverage = I2rms R
= (28,75)2(8) ✓
= 6612,5 W (6,61 kW) ✓ (5)
[11]
QUESTION 10
10.1 The minimum energy (of incident photons) that can eject electrons from a metal (surface). ✓✓(2)
10.2 Wo = 3,51 x 10-19 J ✓ (1)
10.3 EQUAL to ✓ The gradient is Plank’s constant. ✓ (2)
Positive marking from QUESTION 10.1.2
10.4 Wo = hfo ✓
3,51 x 10-19 = 6,63 x 10-34 fo ✓
fo = 5,29 x 1014 Hz ✓ (3)
Positive marking from QUESTION 10.1.2
10.5 E = Wo + Ek Any one ✓
ℎ𝑐 = Wo + ½ mv2
𝜆
6,63𝑥 10−34 𝑥 3 108 ✓ = 3,51 x 10-19+ ½ x 3,83 x 10-19 ✓
𝜆
𝜆 = 2,71 x 10-7m ✓(5)
[13]
TOTAL: 150