tanθ = 4 ∴θ = 17.1027...º 13 ∴ PKL = 90º + 17.1027...º = 107.1º Area ΔPKL= ½ (PK)(LK). sinPKL =½(√185)(40)sin107.10º 3 = 86.67 square units
🗸 yL= 28 3 🗸 length of LK 🗸 xP 🗸 yP 🗸 length of ⊥ height 🗸 substitution into the area formula 🗸 answer (7)
🗸 yL= 28 3 🗸 length of LK 🗸 xP 🗸 yP 🗸 PKL 🗸 substitution into the area 🗸 answer (7)
4.3
The centres of the two circles lie on the same vertical line x = 2. and the sum of the radii = 10 n -1 = 10 1 - n = 10 n =11 or n = - 9 Answer only: full marks
🗸 correct method 🗸 sum of radii = 10 🗸 n =11 🗸 n = - 9 (4)
[21]
QUESTION5
5.1.1
sin191° = - sin11°
🗸 - sin11° (1)
5.1.2
cos 22° = cos(2 ´11°) = 1 - 2sin 211°
🗸 answer (1)
5.2
cos(x - 180°) + √2 sin (x + 45°) = - cos x + √2(sin x cos 45° + cos x sin 45°) = - cos x + √2(sin x( 1 )) + cos x ( 1 )) √2 √2 = - cos x + sin x + cos x = sin x
OR cos(x - 180°) + √2sin (x + 45°) = - cos x + √2(sin x cos 45° + cos x sin 45°) = - cos x + √2(sin x( 2 )) + cos x ( 2 )) √2 √2 = - cos x + sin x + cos x = sin x
🗸 - cos x 🗸 expansion 🗸 special angle ratios 🗸simplification of last 2 terms 🗸answer (5)
🗸 - cos x 🗸 expansion 🗸 special angle ratios 🗸simplification of last 2 terms 🗸answer (5)
5.3
sin P + sin Q = sin P + cos P (sin P + cos P)2 = ( 7 )2 5 sin 2 P + 2 sin P cos P + cos2 P = 49 25 2 sin P cos P = 49 - 1 25 sin 2P =(49 - 25) 25 25 = 24 25
🗸 sin Q = cos P 🗸 squaring 🗸 expansion 🗸 sin 2 P + cos2 P =1 🗸answer (5)
cos(x - 30°) = 2 sin x cos x cos 30° + sin x sin 30° = 2 sin x √3 cos x + ½ sin x = 2 sin x 2 √3 cos x = 3 sin x 2 2 tan x =√3 3 x = 30° + k.180°; k ∈Z
OR x = 30° + k.360° or x = 210° + k.360° ; k ∈Z
🗸 expansion 🗸 special ∠ s
🗸 simplification 🗸 equation in tan 🗸 30° 🗸 k.180°; k ∈Z
OR
🗸 30° and 210° 🗸 k.360° ; k ∈Z (6)
6.2.1(a)
A(120º;0)
🗸answer (1)
6.2.1(b)
C(- 150° ; - 1)
🗸 x value 🗸 y value (2)
6.2.2(a)
x ∈ (-90° ; 30°) OR - 90° < x < 30°
🗸 endpoints 🗸 correct interval (2)
6.2.2(b)
x ∈ (- 160° ; 20°) OR -160° < x < 20°
🗸endpoints 🗸correct interval (2)
6.2.3
y = 22 sin x +3 Range of y = 2 sin x + 3 : y ∈ [1 ; 5] OR 1 ≤ y ≤ 5 Range: y = 22sinx+3 : y ∈[2 ; 32] OR 2 ≤ y ≤ 32 Answer only: full marks
🗸 1 🗸 5 🗸 2 🗸 32 🗸 correct interval (5)
[18]
QUESTION 7
7.1.1
sinq =x sinθ = sin90º AC OR x AC
AC = x AC = x sinθ sinθ
🗸 trig ratio 🗸 simplification (2)
7.1.2
cos 60° = x + 2sin30 = sin90º CE OR x + 2 CE CE =x + 2 CE = x + 2 cos 60° sin30º =x + 2 = 2(x + 2) =2(x + 2) 1 2
🗸 trig ratio 🗸 making CE the subject (2)
7.2
Area ΔACE = ½ AC.EC.sin ACE = ½(x )(2(x + 2))sin 2q sinθ = x(x + 2) x 2 sinq cosθ sinθ = 2x(x + 2)cosθ
🗸 use area rule correctly 🗸 substitution of x (2(x + 2)) sinθ 🗸 substitution of sin 2θ (3)
LN = NP and LO = OM ON = ½ PM [ midpoint theorem] ON = ½ MS [PM = MS]
OR N1 = 90° [line from centre to midpt chord] P = 90° [∠ in semi-circle] L is common ΔNLO ||| Δ PLM (∠∠∠) NL = NO = ½ PL PM ON = ½PM ON = ½MS [PM = MS]
🗸LO = OM 🗸S 🗸 R 🗸S (4)
🗸S R 🗸S/R 🗸S 🗸S (4)
8.2.1
AN = AK [line || one side of D OR prop theorem; KN ||BM AM AB AN = 3y = 3 AM 5y 5
🗸R
🗸S (2)
8.2.2
AM = 10x[given] MC 23x AM = 5 y =10x \ y = 2x LC = MC [line || one side of D OR prop theorem; KN ||LM KL NM = 23x= 23x= 23 2y 4x 4
OR AM = 10x[given] MC 23x AN = 3y = 6x MN 2y 4x LC = MC [line || one side of D OR prop theorem; KN ||LM KL NM = 23x= 23x= 23 2y 4x 4
🗸S 🗸R 🗸S (3)
OR
🗸S 🗸R 🗸S (3)
[13]
QUESTION 9
9.1
B1 = x[∠ s opp = sides] M2 = 2x[ext∠ of ∆] OR Mˆ 1 =180° - 2x[∠s of ∆] BM = MN [ 2 tans from a common point] N = 180° - 2x= 90° - x[ ∠s opp = sides] 2
OR NM = BM [ 2 tans from a common point] B2 = N1 [ ∠'s opp = sides] B1 = x[ ∠'s opp = sides] In ∆ KBN x + x + B2 + N1 =180° [sum of ∠'s of ∆] 2x + 2N1 =180° x + N1 = 90° N1 = 90° - x
🗸S 🗸S 🗸R 🗸S 🗸R 🗸answer (6)
🗸S 🗸R 🗸S 🗸R 🗸S 🗸answer (6)
9.2
MBA = B2 + B3 = 90° [tangent^diameter] B3= 90° - B2 = 90° - (90° - x) = x B3 = Kˆ = x AB is a tangentconverse tan-chord theorem
OR B2 = N1 B1 + B2 = x + (90° - x) = 90° KN is diameter[converse ∠ in semi-circle MBA = B2 + B3 = 90° [tangent ^diameter] AB is a tangentconverse tan-chord theorem
🗸S 🗸R 🗸S 🗸S 🗸R (5)
[11]
QUESTION10
10.1
Constr: Let M and N lie on AB and AC respectively such that AM = DE and AN = DF. Draw MN.
Proof: In ∆ AMN and ∆ DEF AM = DE [Constr] AN = DF [Constr] A = D [Given] Δ AMN º Δ DEF(SAS) AMˆ N = E = B MN || BC [corresp ∠s are equal] AB = AC [line || one side of D OR prop theorem; MN ||BC] AM AN AB = AC [AM = DE and AN = DF] DE DF
🗸Constr 🗸Δ AMN Ξ Δ DEF 🗸SAS 🗸MN || BC and R 🗸AB = AC 🗸R AM AN (6)
10.2.1(a)
DOˆ B= 90° DGˆ F= Gˆ 3 + Gˆ 4 = 90° [∠ in semi-circle] DOˆ B+ DGˆ F=180° DGFO is a cyclic quad. [converse: opp ∠s of cyclic quad] OR ∠s of quad = 180°/Ðe van koordevh = 180°]
OR EOB= 90° DGF= G3 + G4 = 90° [∠ in semi-circle] EOB = DGF DGFO is a cyclic quad. [converse: ext ∠ = opp int ∠ OR ext∠ of quad = opp int ∠]
🗸S 🗸R 🗸R (3)
🗸S🗸 R 🗸R (3)
10.2.1(b)
F1 = D [ext ∠ of cyclic quad] G1 + G2 = D [tan-chord theorem] F1 = G1 + G2 GC = CF [ sides opp equal ∠s]
🗸S 🗸R 🗸S🗸 R 🗸R (5)
10.2.2(a)
AB = DE = 14 [diameters] OB = 7 units BC = OC – OB = 11 – 7 Answer only: full marks = 4 units
🗸S 🗸S 🗸S (3)
10.2.2(b)
In Δ CGB and Δ CAG G1 = A = x [tan-chord theorem] C = C [common] ∆CGB ||| ∆CAG [∠∠∠] CG = CB CA CG CG = 4 18 CG CG 2 = 72 CG = √72 or 6√2 or 8,49 units
🗸S/R
🗸S
🗸S
🗸CA = 18
🗸answer
(5)
10.2.2(c)
OF = OC – FC = 11 – √72 tan E = OF OE = 11 - √72 = 0,36 7 E = 19,76°
OR OF = OC – FC = 11 – √72 FE2 = OE 2 + OF2 = 72 + (11 - √72)2 FE = 7,437.. = 7,44 cos E = OE OR sin E = OF FE FE = 7 = 0,94 = 11 - √72 = 0,338 7,44 7,44 E = 19,76° E = 19,76°
🗸OF 🗸trig ratio 🗸substitution 🗸answer (4)
🗸OF 🗸trig ratio 🗸substitution 🗸answer (4)
[26]
TOTAL : 150
Last modified on Thursday, 23 September 2021 09:32