MATHEMATICS
PAPER 2
GRADE 12
NSC EXAMS PAST PAPERS AND MEMOS JUNE 2019
QUESTION 1
1.1 | Mean = 48 | ✔ 48 (1) |
1.2 | SD/SA = 22,08 | ✔✔22,08 (2) |
1.3 | Girls performed better. | ✔Girls |
1.4 | 51 – 48 = 3 | ✔3 (1) |
1.5 | Boys’ standard deviation will remain the same | ✔remain the same (1) |
[7] |
QUESTION 2
2.1 |
| ✔frequency | ||||||||||||||||||||||
2.2 | ✔grounding at (0 ; 18) | |||||||||||||||||||||||
2.3 | 48 ≤ x < 58 | ✔answer (1) | ||||||||||||||||||||||
2.4 | 60 – 49 = 11 senior citizens | ✔49 | ||||||||||||||||||||||
2.5 | Q1 = 39 | ✔value of Q1 | ||||||||||||||||||||||
2.6 | ✔minimum and maximum | |||||||||||||||||||||||
[13] |
QUESTION 3
3.1.1 | ✔substitution | |
3.1.2 | mKM = y2 - y1 x2 - x1 = -4 - 7 7 - 0 = - 11 7 | ✔substitution |
3.1.3 | mLM = y2 - y1 | ✔gradient of LM |
3.1.4 | tanθ = - 11 | ✔tanθ = - 11 |
3.2 | ✔ y = 2x + 7 OR ✔mKL = -5 OR |
3.3 | mLM × mMN = 2 × (-½) OR LMN is a right angle | ✔product of gradients |
3.4 |
| ✔KL = NM = 5√5 |
[22] |
QUESTION 4
4.1 | M (2 ; 4) | ✔value of x |
4.2 | r2 = (5 - 2)2 + (0 - 4)2 | ✔ (x - 2)2 |
4.3 | mGH = 8 - 0 | ✔mGH |
4.4 | At J, y = 0 | ✔ y = 0 |
4.5 | HJG is a right angled triangle (8,6 and 10). So the rotation of J around M will complete a rectangle Hence, j ((-1 + 6; 0 + 8)) = J'(5;8) | ✔value of x |
4.6 | x2 + y2 - 12x - 2y + 17 = 0 | ✔completing the square |
[19] |
QUESTION 5
5.1.1 | (2) | |
5.1.2 | sin84º = sin2 × 42º | ✔double angle |
5.1.3 | sin3º = sin(45º - 42º | ✔3° = 45° – 42° |
5.2 | sin(x - 450º).tan(180º + x).sin(90º - x) | ✔− cos x |
5.3.1 | cos (A + B) = cos A cos B - sin A sin B | ✔expansion (1) |
5.3.2 | ✔compound angle identity |
5.4 | ✔ OR ✔ 2cos2θ − 1 OR ✔ | |
[25] |
QUESTION 6
6.1 | y∈[-1;1] | ✔answer (1) |
6.2 | g: | |
6.3 | 180° | ✔180° (1) |
6.4 | x = – 45° | ✔– 45° (1) |
6.5 | x∈[45º ; 90º) | ✔critical values |
6.6 | h(x) =sin (x – 45°) + 1 | ✔h(x) =sin (x – 45°) + 1 (1) |
[9] |
QUESTION 7
7.1 | InΔ KLN : | ✔ LN = h (1) |
7.2 | ✔correct sine rule | |
7.3 | LM = h sin(y + z) and | ✔substitution |
[7] |
QUESTION 8
8.1 | the centre of a circle | ✔answer (1) |
8.2.1 | AC = 10 cm (line from centre ⊥ chord) | ✔length of AC |
8.2.2 | (x + 5)2 = 102 + x2 | ✔radius = (x + 5) |
[7] |
QUESTION 9
9.1 | interior opposite angle | ✔answer (1) |
9.2.1 | R2 = Q2 = 41° (∠s in the same seg) OR T1 = R2 = 41° (tan – chord theorem)/(raaklyn-koord stelling) | ✔Statement |
9.2.2(a) | T2 + 34° = 78° (tan - chord theorem ) | ✔Statement |
9.2.2(b) | 41° + Q2 + 44° + 34° = 180° ( opp. ∠ s of a cyclic quad.) | ✔Statement |
9.2.2(c) | T4 = 41° + 61° ( ext. ∠s of a cyclic quad.) | ✔Statement OR ✔Statement |
9.2.2(d) | W + 41°+ 41° = 180° ( int .∠s of a Δ) | ✔Statement | |
9.2.3(a) | Q2 = 61º and T2 = 44º | ✔Q2 ≠ T2 | |
9.2.3(b) | R2 + W = 41º + 98º | ✔R2 +W ≠ 180º | |
9.2.3(c) | R1 = T2 = 44°(∠s in same seg) | ✔R1 + R2 ≠ 90º | |
[21] |
QUESTION 10
10.1 |
| ✔construction
|
10.2.1 | AB = 5 units | ✔5 (1) |
10.2.2(a) | C is common | ✔Statement / Reason |
10.2.2(b) | CB = CA (|||Δs) | ✔proportion |
10.2.3 | CF = CB2 | ✔substitution g |
10.2.4 | AF = 13 – 11 = 2 unit | ✔length of AF (1) |
10.2.5 | CB = CA = (prop. theorem ; DF||BA ) CF = CB (prop. theorem ; DF ||BA ) | ✔proportion |
[20] | ||
TOTAL: 150 |