Physical Sciences (chemistry)
Paper Two (P2)
Grade 12
Amended Senior Certificate Exam
Past Papers And Memos May/june 2016

MEMORANDUM

QUESTION 1 
1.1 A ✓✓ (2) 
1.2 B ✓✓ (2) 
1.3 B ✓✓ (2) 
1.4 C ✓✓ (2) 
1.5 B ✓✓ (2) 
1.6 D ✓✓ (2) 
1.7 C ✓✓ (2) 
1.8 B ✓✓ (2) 
1.9 A ✓✓ (2)  
1.10 C ✓✓ (2)  

[20] 

QUESTION  2  
2.1  

2.1.1 E ✓ (Accept: methyl propanoate) (1) 
2.1.2 C ✓ (Accept: butan-1-ol) (1) 
2.1.3 D ✓ (Accept: 2,2-dimethylpropane) (1) 

2.2  

2.2.1 Pent-2✓-yne✓        OR            2✓-pentyne✓ (2)  

Marking criteria for 2.2.1

  • Stem i.e. pentyne. ½
  • Whole name correct. 2/2 

2.2.2  
MS 2.2 (2)

Marking criteria for 2.2.2: 

  • Functional group correct. ½
  • Whole structure correct 2/2 

2.2.3 2-methylbut-1-ene       OR       3-methylbut-1-ene 
Accept      2-methyl-1-butene   (3)

Marking criteria:  

  • Correct stem i.e. but-1-ene/1-butene. ✓ 
  • Only one type substituent ,methyl, correctly identified. ✓
  • Entire name correct. ✓

2.3  

2.3.1 Esters ✓ (1) 
2.3.2 Sulphuric acid/H2SO4 ✓ (1)  
2.3.3 Methyl✓ propanoate ✓ (2)  

Marking criteria:  

  • Ignore spelling, e.g. methylpropanoate. 

[14]  

QUESTION 3  
3.1 The temperature at which the vapour pressure equals the atmospheric  pressure (external pressure). ✓✓ (2 marks or no marks)  
3.2 

Criteria for conclusion:

 

Dependent and independent variables correctly identified.  

             ✓

Relationship between the independent and dependent variables correctly  stated.

            ✓

Examples:

  • Boiling point increases with increase in number of (C) atoms/chain length/  molecular size/molecular mass. 
  • Boiling point decreases with decrease in number of C atoms/chain length/  molecular size/molecular mass. 
  • Boiling point is proportional to number of C atoms/chain length/molecular  size/molecular mass.  (2)  

IF:  
Boiling point is DIRECTLY proportional to number of C atoms/chain  length/molecular size/molecular mass: Max. ½

 

3.3  

3.3.1 P ✓ (1) 
3.3.2 R ✓ (1) 

3.4 ∙       

  • Between alkane molecules are London forces/dispersion forces/induced  dipole forces.  ✓
  • In addition to London forces and dipole-dipole forces each alcohol  molecule has (one site) for hydrogen bonding.
  • In addition to London forces and dipole-dipole forces each carboxylic acid  molecule has two sites for hydrogen bonding. ✓ (Accept: more  sites) 
  • Intermolecular forces in carboxylic acids are stronger than intermolecular  forces in alkanes and alcohols./Intermolecular forces between alkane and  alcohol molecules are weaker than intermolecular forces between  carboxylic acid molecules.✓ 
  • More energy is needed to overcome/break intermolecular forces in  carboxylic acids than in the other two compounds. ✓  (5) 

[11]  

QUESTION 4  
4.1  

4.1.1 Addition/Hydrogenation ✓  (1)  
4.1.2 Elimination/Dehydrohalogenation/Dehydrobromination ✓  (1)  
4.1.3 Substitution/Halogenation/Bromination ✓  (1)  

4.2  

4.2.1 Pt/Ni/Pd/platinum/nickel/palladium ✓ (1)  
4.2.2 H2SO4/H3PO4/sulphuric acid/phosphoric acid ✓ (1) 
4.2.3 Hydration ✓ (1)  
4.2.4 2✓-bromopropane ✓ (2) 

Marking criteria:  

  • Bromopropane: ½
  • 2-bromopropane 2/2

4.3  
MS4.3              (5)  

Notes: 
Whole structure of alkene correct: ✓✓

Only functional group correc: ✓ 

 

Notes: 

  • Condensed or semistructural formula: Max. 4/5 
  • Molecular formula:1/5
  • ∙ Marking rule 3.9  4/5
  • Any additional reactants or products: Max. 4/5
  • If arrow in equation omitted: Max. 4/5 

4.4 ∙ 

  • Higher temperature ✓
  • Concentrated base/Base dissolved in ethanol ✓  (2) 

[15]  

QUESTION 5  
5.1 ANY TWO:  

  • Temperature (of reaction mixture)✓
  • (Addition of a) catalyst ✓
  • Concentration (of reactants) (2) 

5.2 Sulphur/S ✓ (1) 
5.3 Water is used to dilute/change the concentration (of the Na2S2O3(aq)) ✓ (1)  
5.4 

Criteria for investigative question:

 

The dependent and independent variables are stated correctly.  

Asks a question about the relationship between dependent and  independent variables..

Dependent variable: rate (of reaction)/(reaction rate)  
Independent variable: concentration
Examples: 

  • What is the relationship between concentration and reaction rate
  • How does the reaction rate change with change in concentration?  (2) 

5.5 A ✓ (1)  
5.6 Experiment B: 

  •  The concentration of Na2S2O3(aq) is higher./More Na2S2O3 particles per  unit volume. ✓Accept: higher volume of Na2S2O3(aq) is used 
  • More particles with correct orientation  ✓
  • More effective collisions per unit time / Higher frequency of effective  collisions. ✓
    OR

Experiment D:  

  • The concentration of Na2S2O3(aq) is lower./Less Na2S2O3 particles per  unit volume. ✓
  • Less particles with correct orientation.✓
  • Less effective collisions per unit time./Lower frequency of effective  collisions. ✓  (3) 

5.7

Marking guidelines for Option 1 and 2: 

  • Formula:  C = m/MV  / Both   n = m/ and         c = n/v      or ✓
  • Use 158 g·mol-1
  • Use volume (250 cm3) to calculate c(Na2S2O3) or m(Na2S2O3). ✓ 
  • Calculate n(Na2S2O3).✓
  • Use ratio: n(S) = (Na2S2O3) = 1: 1 ✓
  • Use 32 g·mol-1. ✓
  • Final answer: 0,51 g ✓ 
  •  Accepted range: 0,50 to 0,51 g 

Marking guidelines for Option 3 and 4:

  • Use volume (250 cm3)/
  • Use m(Na2S2O3). 62,5 g✓
  • Use 158 g·mol-1
  • Calculate n(Na2S2O3) or m(Na2S2O3)✓
  • Use ratio: n(S) = (Na2S2O3) = 1: 1 ✓
  • Use 32 g·mol-1. ✓
  • Final answer: 0,51 g ✓ 
  • Accepted range: 0,50 to 0,51 g


msq5
QUESTION 6 
6.1 Reversible reaction ✓ (1)  
6.2 Endothermic ✓   →      ∆H is positive./∆H > 0/(Net) energy is absorbed./More energy is absorbed  than released/Energy of product > energy of reactant. ✓  (2)  
6.3 Larger than ✓      →    Kc > 1 ✓ (2)  
6.4 (9)  

CALCULATIONS USING NUMBER OF MOLES  
Mark allocation:  

  • Calculate n(CO)equilibrium i.e. divide m by 28 g·mol-1 OR substitute 6 mol for  equilibrium mole of CO. ✓
  • Change in n(CO) = equilibrium n(CO) – initial n(CO) ✓
  • USING ratio: CO2 : CO = 1 : 2 ✓
  • Equilibrium n(CO2)= initial n(CO2) - change n(CO2). ✓
  • Equilibrium mole of both CO2 and CO divided by 2 dm3
  • Correct Kc expression (formulae in square brackets). ✓
  • Substitution of concentrations into Kc expression. ✓
  • Substitution of Kc value ✓
  • Final answer: 4,28–4,29 (mol) ✓

OPTION 1 
n = m/M
= 168/28
6 mol  

 

CO2 

CO 

REMARKS

Initial quantity (mol) 

 

Change (mol) 

     3 

6

ratio ✓

Quantity at equilibrium (mol)/  

x – 3 ✓

 

Equilibrium concentration (mol·dm-3)  

x − 3

Divide by 2 ✓

Kc =     [CO]2
           [CO2]✓
14 ✓ =        (3)2
                  x − 3
                    2 

∴x = 4,29 mol ✓

 No KC expression, correct substitution: Max 8/9
 Wrong KC expression: 6/9

OPTION 2  
n = m/M                                                                         c = n/v
= 168/28                                                              = 6/2 (divide by 2)          
= 6 mol                                                                 = 3 mol.dm-3 

 

CO2 

CO 

 

Initial concentration (mol·dm-3)

 

Change (mol·dm-3)  

1,5 

3 ✓

ratio✓ 

Equilibrium concentration (mol·dm-3)  

x −1,5 ✓ 

 

Kc =     [CO]2
           [CO2]✓
14 ✓ =        (3)2
                x −1,5

∴x = 2,14 mol·dm-3

 n(CO2) = cV 
 = (2,14)(2)  

= 4,29 mol ✓ 

 No KC expression, correct substitution: Max 8/9
  Wrong KC expression: 6/9

 OPTION 3 
n = m/M
= 168/28
6 mol 
 

 

CO

CO 

 

Initial quantity (mol) 

4,28✓ 

 

Change (mol) 

ratio ✔ 

Quantity at equilibrium (mol)/  

1,28 ✓

6✔

 

Equilibrium concentration (mol·dm-3)  

0,64 

multiply by 2 ✔

Kc =     [CO]2
           [CO2]✓
14 ✓ =        (3)2
                [CO2]✓
∴ [CO2] = 0,64 mol·dm-3  

 No KC expression, correct substitution: Max 8/9    
Wrong KC expression: 6/9 

6.5  

6.5.1 Remains the same ✓ (1) 
6.5.2 Decreases✓ (1)  
6.5.3 Increases✓ (1)  

[17]  

QUESTION 7  

7.1  

7.1.1 An acid is a proton/ H+ donor. ✓✓ NOTE: not H3O+ (2 or/of 0)  (2)  
7.1.2 H2O ✓ 
         H2CO3 ✓ (2) 

7.1.3 H2O ✓     OR/OF     HCO-3 (1)  

7.2  

7.2.1
 ms 7      (8)  

Marking guidelines:

  • Formula: 
    c =  [n/v] /n = cV ✓
  • Substitution of (0,1)(0,5). ✓
  • Substitution of (0,8)(0,25). ✓
  • Use n(NaHCO3) = n(HCℓ) = 1:1. ✓
  • nb(in excess) = nb(initial) – nb(reacted) 
  • Use n(OH) = n(NaHCO3) = 1:1. ✓ 
  • Substitute V = 1,3 dm3 in C = n/V
  • Final answer:   0,12 mol·dm-3

7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1  (4)  

OPTION 1  
Kw = [H3O+][OH-] = 1 x 10-14
 
1 x 10-14 = [H3O+](0,12) ✓ 
[H3O+] = 8,33 x 10-14 mol·dm-3 
pH = - log [H3O+] ✓ 
 = - log(8,33 x 10-14) ✓ 
 = 13,08 ✓

OPTION 2  
pOH = -log[OH-] ✓
= -log(0,12) ✓ 
= 0,92  

pH + pOH = 14 
pH + 0,92 = 14 ✓ 
pH = 13,08 ✓ 

[17] 

QUESTION 8  
8.1 Electrons are transferred. ✓ OR/OF The oxidation number of Mg/H changes.  OR/OF Mg is oxidised / H+ is reduced.   (1) 
8.2 H+ ions/HCℓ/H+(aq)/HCℓ(aq) ✓ (1)  
8.3 Ag is a weaker reducing agent ✓(than H2) and will not be oxidised ✓to Ag+ ✓ OR/OF H2 is a stronger reducing agent ✓ (than Ag) and will be oxidised ✓ to H+.✓           (3) 
8.4 Electrode/Conductor of electrons (in hydrogen half-cell) ✓  (1)  

8.5  

8.5.1  Chemical energy to electrical energy ✓ (1)  
8.5.2 Provides path for movement of ions./Completes the circuit./Ensures electrical  neutrality in cell. ✓ (1)  
8.5.3 2H+ 2e- → H2 ✓✓  (2) 

Notes  
H2 ←2H + 2e-       (2/2)                            2H+ + 2e-  ⇌ H2 (½)

H2 ← 2H+ + 2e- (0/2 )                            2H+ + 2e ← H2 (0/2 ) 

8.5.4 Mg(s) | Mg2+(aq) || H+(aq) | H2(g) | Pt  ✓ ✓ ✓     OR/OF Mg(s) | Mg2+(1 mol·dm-3) || H+(1 mol·dm-3) | H2(g) | Pt  
Accept
Mg | Mg2+ || H+ | H2 | Pt (3)

8.6 (4)  

OPTION 1
Eθcell = Eθreduction-Eθoxidation ✓ 
= 0,00 ✓ – (-2,36) ✓ 
= 2,36 V ✓

Notes

  • Accept any other correct formula from the data  sheet.
  • Any other formula using unconventional  abbreviations, e.g. E°cell = E°OA - E°RA followed by  correct substitutions: ¾

OPTION 2

MS88

8.7 Increases✓ (1)  

[18] 

QUESTION 9  

9.1  

9.1.1 Electrolyte✓ (1) 
9.1.2 Electrolytic (cell) ✓ 
          Electrolysis 0/1   (1) 

9.2 A to/na B ✓ (1) 
9.3  

9.3.1 B ✓(1)  
9.3.2  A ✓(1)  

9.4 Decreases ✓     Copper (Cu) is oxidised to Cu2+/Oxidation takes place at A/Electrons are lost.  ✓ 

  [7]  

QUESTION 10
10.1  

10.1.1 Air ✓ (1)  
10.1.2 Natural gas/methane/oil/coal ✓ (1)  
10.1.3 Sulphur/iron pyrite/Iron sulphide ✓   (1)  

10.2  

10.2.1 Haber ✓ (1) 
10.2.2 Ammonia✓ (1) 
10.2.3 H2SO4 ✓ (1) 
10.2.4 SO3+ H2SO4 ✓→ H2S2O7 ✓ Bal. ✓ (3) 

Notes:  

  • Reactants ✓ Products ✓ Balancing ✓
  • Ignore double arrows.
  • Marking rule 6.3.10.

10.3  

10.3.1 %N[NH4NO3] = 28/80  ✓ x 100 = 35%  
           %N[(NH4)2SO4] = 28/132 ✓ x 100 = 21,21%  
Ammonium nitrate (has the highest percentage of nitrogen) ✓  (4)  

10.3.2 Ostwald (process) ✓ (1)  

[14]  
TOTAL: 150  

Last modified on Friday, 13 August 2021 11:50