NOTE:

  • If a candidate answers a question TWICE, mark the FIRST attempt ONLY.
  • Consistent accuracy applies in ALL aspects of the marking guideline.
  • If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
  • The mark for substitution is awarded for substitution into the correct formula.

QUESTION 1

 1.1.1   2x2  + x − 3 = 0
(2x+3)(x−1)=0
∴ x = −3/2 or x=1 
 ✓ factorisation
 ✓  x = −3/2 ✓ x = 1
 (3)
 1.1.2  x(7x+2)]=1
7x2 + 2x − 1 = 0
Maths ans 2 2020
=− 2±√32
       14
=0,26 or −0,55
  ✓standard form
  ✓ Substitution
 ✓0,26  ✓−0,55
(4)
 1.1.3  −x2 − x + 2 ≤ 0
x2 + x − 2 ≥ 0
(x+2)(x−1) ≥ 0
∴ x ≤ − 2 or/of x ≥ 1
Maths ans 1b 2020
             OR
−x2 − x + 2 ≤ 0
(1−x)(x+2) ≥ 0
∴ x ≤ − 2 or/of x ≥ 1
Maths ans 1c 2020

 ✓x2 − x + 2 ≤ 0
✓x2 + x − 2 ≥ 0
✓ x ≤ − 2    x ≥ 1

 

 

 

 

 

       OR

 

 

✓1−x
✓factorisation
✓x ≤ − 2  x ≥ 1
 (4)

 1.1.4

 2x + 22−x 17/2 
2.2x + 2.22−x = 17
2.2x + 23 = 17
           2x
2.22x − 17.2x + 8 = 0
let k = 2x  
∴ 2k2  − 17k + 8 = 0
(2k −1)(k −8) = 0
k = ½ or/of k = 8
∴ 2x = 2−1 or/of 2x= 23
x = −1 or/of x = 3
        OR
 2x + 22−x 17/2 
2.2x + 2.22−x = 17
2.2x + 23 = 17
           2x
2.22x − 17.2x + 8 = 0
(2.22x − 1)(2x − 8)=0
∴ 2x = 2−1  or/of  2x= 23
x = −1 or/of  x = 3

 

 

✓ standard form
✓ substitution
✓factorisation
✓2x = 2−1 and 2x ≈ 3
✓both answers

       

 

 

    OR

 

✓standard form 
✓factorisation
✓2x = 2−1 and 2x = 3
✓ both answers
 (5)

 1.2

 Maths ans 1.2a 2020
(x − 2)2 + y2 = 25  (1)
x + 3 − 3y = 0  (2)
x = 3y − 3  (3)
(3y − 3 − 2)2 + y2 = 25
(3y − 5)2 + y2 = 25
9y2 − 30y + 25 + y2 = 25
10y2 − 30y = 0
10y(y−3) = 0
∴ y = 0 or/of y = 3
x = −3 or/of  x= 6
∴ A(−3;0) and B(6;3)

          OR

(x − 2)2 + y2 = 25  (1)
x + 3 − 3y = 0  (2)
y = 1/3 (x + 3)  (3)
(x−2)2 + (x/3 + 1)2 = 25
x2 − 4x + 4 + x2 + 2x + 1 − 25 = 0
                      9      3
9x2 − 36x + 36 + x2 + 6x − 216 = 0
10x2 − 30x − 180 = 0
x2 − 3x − 18 = 0
(x+3)(x−6) = 0
∴ x = −3 or/of  x= 6
∴ y = 0 or/of y = 3
∴ A(−3;0) and B(6;3)

 

 

 

 

 

 

 

 

 

 ✓ x = 3y − 3
 ✓ substitution
✓standard form
✓factorisation
✓x and y values
✓both sets of coordinates

 

 

 

   OR

 

 

 

 

✓y = 1/3 (x + 3) 
✓substitution
✓standard form
✓factorisation
✓x and y values
✓both sets of coordinates

 (6)

 1.3

 (x+m)(x+n) = p2
x2 + nx + mx + mn − p2 = 0
x2 + (m + n)x + (mn − p2 = 0
For real roots
b2 − 4ac ≥ 0
∴ (m + n)2 − 4(1)(mn − p2) ≥ 0
m2 + 2mn + n2 − 4mn + 4p2 ≥ 0
m2 − 2mn + n2 + 4p2 ≥ 0
(m − n)2 + (2p)2 ≥ 0
Now: (m − n)2 ≥ 0 and (2p)2 ≥ 0
∴Δ ≥ 0

 

✓ x2 + (m + n)x + (mn − p2 = 0
✓ (m + n)2 − 4(1)(mn − p2) ≥ 0 

 

 

✓ (m − n)2 + (2p)2 ≥ 0
✓ explanation

 (4)

              [26]

 

QUESTION 2

2.1


Maths ans 2.1 2020

 2.1.1   206; 231   ✓206   ✓ 231       (2)
 2.1.2  2a = −2
 ∴a = −1
 3a + b = 33 
 −3 + b = 33
 ∴ b = 36
a + b + c = 86
 −1 + 36 + c = 86 
 ∴ c = 51
Tn = −n2 + 36n + 51 

✓a = −1
✓b = 36

 

 ✓ c = 51

✓ Tn = −n2 + 36n + 51   
 (4)

 2.1.3  326 = −n2 + 36n + 51 
n2 − 36n + 275 = 0
(n − 11)(n − 25) = 0
∴ n = 11   or/of   n = 25 

✓substitution

✓method

✓answers     (3)

 2.1.4  Maths ans 2.1.4 2020
 

 2a = − 2
∴  a = −1

3a + b = 33
−3 +b = 33
∴ b = 36

a + b + c = 86 + k
−1 + 36 + c = 86 + k 
∴ c = 51 + k

∴Tn + k = −n2 + 36n + (51 + k) 

 

 

✓ a = −1 and b = 36
 

 

✓ c = 51 + k


 (2)

 2.2.1  2y − 1 ; 4y − 1 ; 6y − 1
 d = 4y − 1 − (2y − 1)
    = 2y
 Tn = 2yn − 1
 T30 = 2y(30) − 1
    = 60y − 1
           OR
 Tn = a + (n−1)d
 T30 = (2y − 1) + (30 − 1) (2y)
       = 2y − 1 + 58y
      = 60y − 1

 

✓ d = 2y
 ✓2yn 
 ✓ 60y − 1
 
OR

 ✓ d = 2y
 ✓ substitution
 ✓ answer
 (3)

 2.2.2

 Snn/2 [2a + (n − 1)d]
S3030/2[2(2y − 1) + 29(2y)]
       =15(4y − 2 + 58y)
      = 15 (62y − 2)
∴ −2820 = 15(62y − 2)
  −188 = 62y − 2
  −186 = 62y
 ∴ y = −3

      OR

Snn/2 (a+l)
S3030/2 (2y − 1 + 60y − 1)
−2820 = 15(62y − 2)
 −188 = 62y − 2
  −186 = 62y
 ∴ y = −3

  

 
✓ d = 2y
✓ substitution into correct formula 
 

✓ equating to  − 2820

✓ answer

           OR

✓ d = 2y
✓ substitution a and

✓ equating to  − 2820

✓ answer

(4)

       [18]

 

QUESTION 3

 3.1   1 + 4 + 42 + 43 + ... + 4n−1      
    ∴ Tn =  4n−1 
  ∴ Sum  Maths ans 3.1b 2020
 For original sequennce:
Sum : Maths ans 3.1a 2020
SnMaths ans 3.1a 2020− Maths ans 3.1b 2020
  ✓ Tn = 4n−1 
  ✓ Maths ans 3.1b 2020
 ✓ Maths ans 3.1a 2020
 ✓ answer

(4)
 3.2

 S   1   
          a − r
∴ 1 + x + x2 + x3 + ... =     1    and
                                      1 − x
  1 − x + x2 − x3 + ... =    1   
                                    1 + x 
Sum :    1      +        1   
           1 − x         1 + x
       = 1 + x + 1 − x
          (1 − x)(1 + x)
       =     2    
          1 − x2  
∴     2      =  8
   1 − x2  
  8 − 8x2  = 2 
  −8x2 = − 6
    x2 = ¾
    x = ±  √3/2

✓    1   
   1 − x 

✓    1   
   1 + x 

 

 

 ✓      2    
     1 − x2 
✓ equating sum to 8

 

 

✓ x2 = ¾
✓ answer
(6)

     [10]

 

QUESTION 4

 4.1   ƒ (x) =   a     + 3
            x − 1
x = 1; y = 3
  ✓ x = 1    ✓ y =3 
(2)
 4.2

 y =   a      + 3
      0 − 11
   = 3 − a
0 =    a      + 3
      x − 1
 − 3 =    a   
           x − 1
−3x + 3 = a
x = 1 − a/3  or /of  3 − a 
                                3

 ✓ 3 − a
 ✓ y = 0
 ✓ x = 1 − a/3  or /of  3 − a 
                                     3
(3)
 4.3  Maths ans 4.3 2020

 ✓ asymptotes
 ✓ y - intercepts
 ✓ x - intercepts
 ✓ shape
(4)

 4.4  ƒ (x) =   a   + 1 or/of ƒ(x) =    −1    +1
            x + 2                          x + 2
 ✓ x + 2 ✓ +1
(2)
     [11]

 

QUESTION 5

 5.1   0; −7    ✓y=−7 (1) 
 5.2  q = −8   ✓ q = −8   (1)
 5.3

 g(x)=bx − 8
−5 = b1 − 8
 ∴ b = 3
At turning point of ƒ:

x = −b/2a = − ¾
⇒−3/2a = −¾
∴−6a = −12
a = 2
∴−5 = 2(1)2 + 3(1) + c
c = −10

 ✓substituting  (1; −5) 
 

 

 

✓ x = −b/2a
 ✓−b/2a = −¾
 ✓ b = 3
 ✓ Simplifying
 ✓ ƒ(1) = −5     (6)

 5.4  y > −8  ✓✓ y > −8
(accuracy)   (2)
 5.5  y + 9x = − 28
y = −9x − 28
y = 2x2 + 3x − 10
∴  2x2 + 3x − 10 = − 9x −28 
2x2 + 12x + 18 = 0
x2 + 6x + 9 = 0
(x + 3) (x + 3) = 0
 ∴ x = −3
y = 2(−3)2 + 3(−3) − 10
 =−1
 ∴ T = (−3; −1)
         OR
y = −9x − 28
∴m=−9
ƒ(x) = 2x2 + 3x − 10
ƒ' (x) = 4x + 3 = −9
∴ 4x = −12
x = −3
y = −9(−3)−28
  = −1
∴T(−3;−1)

  ✓  2x2 + 3x − 10 = − 9x −28
  ✓ standard form
  ✓factorisation
  ✓x =− 3
  ✓y =− 1

 

 

 

 

      OR
  ✓ m =− 9
 

✓ƒ'(x) = 4x+3
 ✓equating gradients
 ✓x = −3
 ✓y =− 1
(5)

 5.6  y = log3x  y = log3x   (2)
 5.7  p(x) = ƒ(x) + 1
       = 2x2 + 3x − 10 + 1
       =2x2 + 3x −9
      =(2x−3)(x+3)
∴ when: y = 0
x = 3/2 or/of −3
 ∴  x < −3 or/of 0 < x < 3/2 

 ✓p(x) =2x2 + 3x −9
 ✓x-intercepts 

 ✓x < −3 

 ✓0 < x < 3/2 (accuracy)
(4)

     [21]

 

QUESTION 6

 6.1    a = p(1−i)n
 1/3 x = x(1 − i)4 
 1/3 = (1−i)4
 3−¼ − 1 = − i
−0.24 = −i
∴  i = 0,24
∴ r = 24%

✓ 1/3 x = x(1 − i)

 

 

✓i = 0,24
✓answer   (3)

 6.2.1  Maths ans 6.2.1 2020

✓ i = 0,095
        12
✓n = 72
✓F =R596458,10
✓Substitution into correct formula

 

 

 

✓answer    (5)

 6.2.2   Maths ans 6.2.2 2020
=R325 000

✓n = − 72
✓ sustitution into correct formula

 

 

 

 

 

✓A = R338070,29
✓n = 5
✓sustitution into correct formula
✓answer


(6)

     [14]

 

QUESTION 7

 7.1    Maths ans 7.1a 2020
                       OR
ƒ(x) = −2x2 
ƒ(x+h)−ƒ(x) = −2(x+h)2−(−2x2)
                   =−2x2 − 2xh − 2h2 + 2x2
                  = −4xh − 2h2  
Maths ans 7.1b 2020
            =−4x

 

 ✓ substitution
 

✓ expansion

 −2x2 − 4xh − 2h2 + 2x2    

✓factorisation
   − 4x

 

 

 

            OR

 

 

✓−2x2 − 2xh − 2h2 + 2x2 

✓−4xh − 2h2

✓substitution

✓factorisation

✓−4x

(5)

 7.2  y = 7x4 −  2  
                √x3 
  = 7x4 − Maths ans 7.2a 2020
∴ dy/dxMaths ans 7.2b 2020
 ✓ Maths ans 7.2a 2020
✓✓ Maths ans 7.2b 2020
(3)
 7.3  Dt (½gt2 − 5/t + 3g)
= Dt (½gt2 − 5t−1 + 3g)
=gt + 5t−2
  ✓5t−1
  ✓gt   ✓+5t−2   
 ✓Dt (3g) = 0    940
     [12]

 

QUESTION 8

 8.1   (0;9)   (0;9) 
 8.2  ƒ(x) =2x3 + x2 − 12x + 9
 ƒ(1) = 2(1)3 + (1)2 − 12(1) + 9 
        =0
∴ ƒ(x) = (x−1)(2x2 + 3x − 9)
∴ 0 = (x−1)(x+3)(2x−3)
∴ x=1 or/of x=−3 or/of x=3/2 
D(−3;0), E(1;0), F(3/2;0)

✓method

✓2x2 + 3x − 9 

✓factorisation

✓D(−3;0), ✓E(1;0), ✓F(3/2;0)

(6)

 8.3  For concave down
ƒ''(x)<0
ƒ'(x) = 6x2 + 2x − 12
ƒ''(x) = 12x + 2
∴12x + 2 < 0
x < −1/6

✓ ƒ''(x)<0

✓ƒ'(x) = 6x2 + 2x − 12
✓ƒ''(x) = 12x + 2
✓x < −1/6   
(4)

 8.4  6x2 + 2x − 12 ≤ 0 
Maths ans 8.4 2020
 =−2± √292
         12
=−1,59 or/of 1,26
∴ −1,59 ≤ x ≤ 1,26

 

✓substitution into correct formula

✓ x - values
✓✓ answer (accuracy)

(4)

     [15]

 

QUESTION 9

 Area of Δ PBA = ½bh = ½ × t × 12 = 6tcm2
 Area of  Δ  ACS = ½t(7 − t) = 7 t− t2 cm2
                                                2    2
Area of  ΔBQC = ½(12 −t)7 = 42 − 7t/2 cm2
Area of rectangle : PBQS = 12 × 7 = 84cm2
∴ Area of ΔABC: 
A(t) = 84 − 6t − 7t + t2 − 42 + 7t
                          2    2              2
    =½t2 − 6t + 42
a>0, so A (t) is a min graph
A'(t) = t −6
At min : A'(t) = 0
∴ t − 6 = 0
        t = 6
Smallest area 
A(6) =  ½(6)2 − 6(6) + 42
=24cm2

✓Area of ΔPBA 
✓Area of Δ ACS

✓Area of ΔBQC

 

 

✓subtracting from 84

 

✓A'(t) = 0

 

 

✓smallest area

(6)

   [6]

 

QUESTION 10

 10.1   Maths ans10 2020

 Correct entries of:

✓12

✓5; 12; 24

✓2y=3; y; y

✓x

 

(4)

 10.2 x + y + 5 + 24 = 60
x + y = 31
2y + 3 + x + 5 + 12 = x + y + 12 + 24 
2y + x + 20 = x + y + 36 
∴ y = 16 and x = 15
 ✓x + y + 5 + 24 = 60

✓2y + 3 + x + 5 + 12 = x + y + 12 + 24 

 ✓y = 16 and ✓ x = 15   (4)
 10.3  P(M or (P and A)) = 2y + 3 + 5 + 12 + x + 24
                                                      135
                                 = 35 + 5 + 12 + 15 + 24 
                                                 135
                                = 91/135 or  0.67

 ✓2y + 3 + 5 + 12 + x + 24

 

✓answer      (3)

     [11]

 

QUESTION 11

 11.1   7! = 5 040 ways    ✓✓7! 
 11.2

 Sample space:
 Maths ans 11.2a 2020
Possible outcomes:
Maths ans 11.2b 2020

Probability = 3 × 2 × 2 × 2 × 1 × 1 × 3
                     5 × 4 × 2 × 3 × 1 × 2 × 1   
                 = 72/240 
                 = 3/10 = 0.3

 

✓arrangement

 

✓arrangement

✓3 × 2 × 2 × 2 × 1 × 1 × 3  and 
   5 × 4 × 2 × 3 × 1 × 2 × 1

✓answer    (4)

 

     [6]

 

TOTAL: 150

Last modified on Friday, 18 February 2022 07:24