NOTE:
QUESTION 1
1.1.1 | 2x2 + x − 3 = 0 (2x+3)(x−1)=0 ∴ x = −3/2 or x=1 | ✓ factorisation ✓ x = −3/2 ✓ x = 1 (3) |
1.1.2 | x(7x+2)]=1 7x2 + 2x − 1 = 0 =− 2±√32 14 =0,26 or −0,55 | ✓standard form ✓ Substitution ✓0,26 ✓−0,55 (4) |
1.1.3 | −x2 − x + 2 ≤ 0 x2 + x − 2 ≥ 0 (x+2)(x−1) ≥ 0 ∴ x ≤ − 2 or/of x ≥ 1 OR −x2 − x + 2 ≤ 0 (1−x)(x+2) ≥ 0 ∴ x ≤ − 2 or/of x ≥ 1 | ✓x2 − x + 2 ≤ 0
OR
✓1−x |
1.1.4 | 2x + 22−x = 17/2 |
✓ standard form
OR
✓standard form |
1.2 | OR (x − 2)2 + y2 = 25 (1) |
✓ x = 3y − 3
OR
✓y = 1/3 (x + 3) |
1.3 | (x+m)(x+n) = p2 |
✓ x2 + (m + n)x + (mn − p2 = 0
✓ (m − n)2 + (2p)2 ≥ 0 |
[26] |
QUESTION 2
2.1
2.1.1 | 206; 231 | ✓206 ✓ 231 (2) |
2.1.2 | 2a = −2 ∴a = −1 3a + b = 33 −3 + b = 33 ∴ b = 36 a + b + c = 86 −1 + 36 + c = 86 ∴ c = 51 Tn = −n2 + 36n + 51 | ✓a = −1
✓ c = 51 ✓ Tn = −n2 + 36n + 51 |
2.1.3 | 326 = −n2 + 36n + 51 n2 − 36n + 275 = 0 (n − 11)(n − 25) = 0 ∴ n = 11 or/of n = 25 | ✓substitution ✓method ✓answers (3) |
2.1.4 | ||
2a = − 2 3a + b = 33 a + b + c = 86 + k ∴Tn + k = −n2 + 36n + (51 + k) |
✓ a = −1 and b = 36
✓ c = 51 + k | |
2.2.1 | 2y − 1 ; 4y − 1 ; 6y − 1 d = 4y − 1 − (2y − 1) = 2y Tn = 2yn − 1 T30 = 2y(30) − 1 = 60y − 1 OR Tn = a + (n−1)d T30 = (2y − 1) + (30 − 1) (2y) = 2y − 1 + 58y = 60y − 1 |
✓ d = 2y ✓ d = 2y |
2.2.2 | Sn = n/2 [2a + (n − 1)d] OR Sn = n/2 (a+l) |
✓ equating to − 2820 ✓ answer OR ✓ d = 2y ✓ equating to − 2820 ✓ answer (4) |
[18] |
QUESTION 3
3.1 | 1 + 4 + 42 + 43 + ... + 4n−1 | |
∴ Tn = 4n−1 ∴ Sum For original sequennce: Sum : Sn : − | ✓ Tn = 4n−1 ✓ ✓ ✓ answer (4) | |
3.2 | S∞ = 1 | ✓ 1 ✓ 1
✓ 2
✓ x2 = ¾ |
[10] |
QUESTION 4
4.1 | ƒ (x) = a + 3 x − 1 x = 1; y = 3 | ✓ x = 1 ✓ y =3 (2) |
4.2 | y = a + 3 | ✓ 3 − a ✓ y = 0 ✓ x = 1 − a/3 or /of 3 − a 3 (3) |
4.3 | ✓ asymptotes | |
4.4 | ƒ (x) = a + 1 or/of ƒ(x) = −1 +1 x + 2 x + 2 | ✓ x + 2 ✓ +1 (2) |
[11] |
QUESTION 5
5.1 | 0; −7 | ✓y=−7 (1) |
5.2 | q = −8 | ✓ q = −8 (1) |
5.3 | g(x)=bx − 8 x = −b/2a = − ¾ | ✓substituting (1; −5)
✓ x = −b/2a |
5.4 | y > −8 | ✓✓ y > −8 (accuracy) (2) |
5.5 | y + 9x = − 28 y = −9x − 28 y = 2x2 + 3x − 10 ∴ 2x2 + 3x − 10 = − 9x −28 2x2 + 12x + 18 = 0 x2 + 6x + 9 = 0 (x + 3) (x + 3) = 0 ∴ x = −3 y = 2(−3)2 + 3(−3) − 10 =−1 ∴ T = (−3; −1) OR y = −9x − 28 ∴m=−9 ƒ(x) = 2x2 + 3x − 10 ƒ' (x) = 4x + 3 = −9 ∴ 4x = −12 x = −3 y = −9(−3)−28 = −1 ∴T(−3;−1) | ✓ 2x2 + 3x − 10 = − 9x −28
OR ✓ƒ'(x) = 4x+3 |
5.6 | y = log3x | y = log3x (2) |
5.7 | p(x) = ƒ(x) + 1 = 2x2 + 3x − 10 + 1 =2x2 + 3x −9 =(2x−3)(x+3) ∴ when: y = 0 x = 3/2 or/of −3 ∴ x < −3 or/of 0 < x < 3/2 | ✓p(x) =2x2 + 3x −9 ✓x < −3 ✓0 < x < 3/2 (accuracy) |
[21] |
QUESTION 6
6.1 | a = p(1−i)n 1/3 x = x(1 − i)4 1/3 = (1−i)4 3−¼ − 1 = − i −0.24 = −i ∴ i = 0,24 ∴ r = 24% | ✓ 1/3 x = x(1 − i)4
✓i = 0,24 |
6.2.1 | ✓ i = 0,095
✓answer (5) | |
6.2.2 | =R325 000 | ✓n = − 72
✓A = R338070,29 |
[14] |
QUESTION 7
7.1 | OR ƒ(x) = −2x2 ƒ(x+h)−ƒ(x) = −2(x+h)2−(−2x2) =−2x2 − 2xh − 2h2 + 2x2 = −4xh − 2h2 =−4x |
✓ substitution ✓ expansion ✓ −2x2 − 4xh − 2h2 + 2x2 ✓factorisation
OR
✓−2x2 − 2xh − 2h2 + 2x2 ✓−4xh − 2h2 ✓substitution ✓factorisation ✓−4x (5) |
7.2 | y = 7x4 − 2 √x3 = 7x4 − ∴ dy/dx = | ✓ ✓✓ (3) |
7.3 | Dt (½gt2 − 5/t + 3g) = Dt (½gt2 − 5t−1 + 3g) =gt + 5t−2 | ✓5t−1 ✓gt ✓+5t−2 ✓Dt (3g) = 0 940 |
[12] |
QUESTION 8
8.1 | (0;9) | (0;9) |
8.2 | ƒ(x) =2x3 + x2 − 12x + 9 ƒ(1) = 2(1)3 + (1)2 − 12(1) + 9 =0 ∴ ƒ(x) = (x−1)(2x2 + 3x − 9) ∴ 0 = (x−1)(x+3)(2x−3) ∴ x=1 or/of x=−3 or/of x=3/2 D(−3;0), E(1;0), F(3/2;0) | ✓method ✓2x2 + 3x − 9 ✓factorisation ✓D(−3;0), ✓E(1;0), ✓F(3/2;0) (6) |
8.3 | For concave down ƒ''(x)<0 ƒ'(x) = 6x2 + 2x − 12 ƒ''(x) = 12x + 2 ∴12x + 2 < 0 x < −1/6 | ✓ ƒ''(x)<0 ✓ƒ'(x) = 6x2 + 2x − 12 |
8.4 | 6x2 + 2x − 12 ≤ 0 =−2± √292 12 =−1,59 or/of 1,26 ∴ −1,59 ≤ x ≤ 1,26 |
✓substitution into correct formula ✓ x - values (4) |
[15] |
QUESTION 9
Area of Δ PBA = ½bh = ½ × t × 12 = 6tcm2 | ✓Area of ΔPBA
✓subtracting from 84
✓A'(t) = 0
✓smallest area |
[6] |
QUESTION 10
10.1 | Correct entries of: ✓12 ✓5; 12; 24 ✓2y=3; y; y ✓x
(4) | |
10.2 | x + y + 5 + 24 = 60 x + y = 31 2y + 3 + x + 5 + 12 = x + y + 12 + 24 2y + x + 20 = x + y + 36 ∴ y = 16 and x = 15 | ✓x + y + 5 + 24 = 60 ✓2y + 3 + x + 5 + 12 = x + y + 12 + 24 ✓y = 16 and ✓ x = 15 (4) |
10.3 | P(M or (P and A)) = 2y + 3 + 5 + 12 + x + 24 135 = 35 + 5 + 12 + 15 + 24 135 = 91/135 or 0.67 | ✓2y + 3 + 5 + 12 + x + 24
✓answer (3) |
[11] |
QUESTION 11
11.1 | 7! = 5 040 ways | ✓✓7! |
11.2 | Sample space: Probability = 3 × 2 × 2 × 2 × 1 × 1 × 3 |
✓arrangement
✓arrangement ✓3 × 2 × 2 × 2 × 1 × 1 × 3 and ✓answer (4)
|
[6] |
TOTAL: 150