QUESTION 1

 1.1   a = −4,1536 
 b = 0,958 
 y = −4,1536 + 0,958x 
Answer Only: Full Marks 
 ✓a = −4,1536 
 ✓b = 0,958 
 ✓y = −4,1536 + 0,958x 
(3)
 1.2  r = 0,98  ✓r = 0,98   (1)
 1.3  Very strong positive correlation   ✓answer   (1)
 1.4  y = −4,1536 + 0,958(51)
y = 45%
Answer Only: Full Marks
 ✓ substitution
 ✓answer
  (2)
 1.5  x̄ = 60,8
 Standard deviation = 17,51
(60,8 − 17,51 ; 60,8 + 17,51)
(43,29; 78,31)
6 learners
 ✓ Standard deviation=17,51
✓(43,29; 78,31)
✓6 learners

 (3)
     [10]

 

QUESTION 2

 2.1   
 Speed (km/h)    Frequency (ƒ)   Cumulative Frequency  
 0< x ≤ 10         10              10
 10< x ≤ 20         20              30
 20< x ≤ 30         45              75
 30< x ≤ 40         72              147
 40< x ≤ 50         23              170
 

 ✓freq column

 ✓ cum freq colum

(2) 

 2.2  Maths PP2 Ans 2.2 sept 2020

 ✓starting pt

✓ end point

✓ shape

(3)

 2.3  Q1 = 23   (accept  22-24)
 Median = 31   (accept 30-32)
 ✓Q1
 ✓Median    (2)
 2.4  Maths PP2 Ans 2.3 sept 2020  ✓for Q3 = 37 (accept 36-38)
 ✓ correct shape
 (2)
 2.5  170 − 110 = 60 cyclists
 (accept 59-61)
 ✓answer  (1)
     [10]

 

QUESTION 3

 3.1   mQR−2 − (−4) = − 1/3 
                0 − 6 

✓ substitution 
 ✓answer  (2)

 3.2  mPQ = 3
 mPQ × mQR = 3 × − 1/3 = − 1 
  ∴ PQ̂R = 90°
 ✓ mPQ = 3
 ✓mPQ × mQR = 3 × − 1/3 = − 1
  (2) 
 3.3  Sub: y =  −x + 2 into 3x  − y  − 2 = 0
 ∴3x  − ( −x + 2 )  − 2 = 0
 3x + x  − 2  − 2 = 0
 4x = 4
 x = 1
 y = 1
 ∴ P(1;1)

 ✓substitution

 ✓x - coordinate

✓y = coordinate

(3)

 3.4   QR = √(0 −  6)2 + (− 2− (− 4))2 
 QR = 2√10 OR √40 OR 6,32
 Answer Only: Full Marks
✓ substitution in correct ƒ
✓ answer
 (2)
 3.5

 PR is the diameter ( angle subtended by diameter = 90°) 
 Midpoint of PR (7/2; −3/2)
 PR = √(1−6)2 + (1 + 4)2 
PR = √50
 r = √50/2 
(x − 7/2)2 + (x + 3/2)2 = (√50/2 )2  
  OR
(x − 3,5)2 + (x + 1,5)2 =  (√50/2 )2  

✓ for the statement PR is the diameter 

 ✓✓Midpoint of PR 

✓for the radius

✓equation

(5)

 3.6  tan PNX =  −1
 ∴  PNX 135°
 tan PMX = 3
 ∴ PMX = 71,57°
θ = 135°  − 71,57° = 63,43°
✓ tan PNX =  −1
✓  ∴ PNX 135°
✓ tan PMX = 3
✓ ∴ PMX = 71,57°
✓answer  (5)
 3.7

 A = ½ × PQ × QR
AΔPQR= ½ × √10 × √40
AΔPQR = 10 square units

   OR
AΔPQR = ½ × PQ × QR × sin 63,43°
AΔPQR= ½ × √10 × √40 × sin 63,43°
AΔPQR = 10 square units

 ✓formula
✓ √10
✓ answer

(3)

     [22]

 

QUESTION 4

 4.1   x2 − 6x  − y2  − 4y + 9 = 0
 x2  − 6x + 9 + y2  − 4y + 4 =  −9 + 9 + 4 
(x −3)2 + (y −2)2 = 4
C(3;2) and r = 2 

✓ completing square 
✓ standard form
✓ 3
✓ 2     (4)

 4.2

 mtan =  −2 
 mBV = ½ 

 y − 2 = ½(x  − 3)
 y = ½x + ½

 ✓ mBV = ½ 

✓ substitution

✓ answer    (3)

 4.3   y = 4  ✓  answer   (1)
 4.4  TA = 4 units
 TB = TA (tangents from the same point)
TB = 4 units 

 ✓ length of TA
 ✓ S  ✓ R
✓ answer   (4)

 4.5 

 T(−1;4)
 y = −2x +k
 4 = −2( −1) + k
 k = 2

 ✓ substitution
 ✓ answer
(2)

 4.6

 tan STA  = −2
STA = 116,57°
∴ ACB = 116,57° (ext. angle of a.c.q)
     OR
tan VCE = ½
∴ VCE = 26,57°
∴ACB = 180° − (90° − 26,57°) = 116,57°
(∠s on straight line)

✓ tan STA  = −2
✓ STA = 116,57°
✓ answer
✓ reason
     OR
✓ tan VCE = ½
✓ ∴ VCE = 26,57°
✓ answer
✓ reason   (4)

     [18]

 

QUESTION 5

 5.1.1   cos 158° 
 = − cos 22° 
 =− p 
Maths PP2 Ans 5.1.1 sept 2020

 

 

 

 ✓= − cos 22° 
 ✓=− p 

 

(2)

 5.1.2  sin 112°
=sin ( 90° + 22°)
= cos 22°
=p
 ✓cos 22°
 ✓ p
(2)
 5.1.3  sin 38°
= sin(60° − 22°)
=sin 60° cos 22°  − cos 60° sin 22°
√3/2p  − ½√(1 − p2)
 ✓ sin(60° − 22°)
 ✓expansion
 ✓√3/2  ✓ ½√(1 − p2)
(40

 5.2

 

sin P = sin 2P 

sin P − sin 2P = 0
sin P − 2sin PcosP = 0 
sin P(1 − 2cosP) =  0
sin P =  0  or cos P = ½
P ∈ (0° ;60° ;180° ;300° ;360°)

OR

P 2P + 360°k or P = 180° − 2P +  360°k ,
𝑃 ∈  ℤ
P = −360°k or  3P = 180° + 360°k
P = 60° + 120°k
P ∈ (0° ;60° ;180° ;300° ;360°) 

 ✓standard form 
  ✓expansion 
  ✓factorisation 
 ✓all correct values of P
 

 


✓P 2P + 360°k

✓P 180° − 2P + 360°k
✓P 60° + 120k
✓all correct values of P
(4)

 5.3

 A + B + C 180°
A + B = 180° −  C
cos(A + B) = cos(180° −  C)
cos(A + B) = − cosC

✓ A + B = 180° −  C
 ✓cos(A + B) = cos(180° −  C)

(2)

 5.4

Maths PP2 Ans 5.4 sept 2020
  = (2 cos x + 1 ) (cos x − 1)
           sin x( 2 cos x + 1)
  = cos x −   1     =    1     −   1      = RHS
     sin x      sin x    tan x     sin x

 ✓1 − cos2x
 ✓sin x(2 cos x + 1)
 ✓2 cos2 x − cos x − 1
 ✓(2 cos x + 1 )(cos x −1)
✓ cos x  −    1   
     sin x      sin x

(5)

 5.5  4 + 7 cos θ = cos 2θ = 0
4 + 7cos θ + 2 cos 2 − 1 =  0
2 cos2 θ + 7cos θ + 3 = 0
(2 𝑐𝑜𝑠 𝜃 + 1) (𝑐𝑜𝑠 𝜃 + 3) = 0
cos θ  = −½ or  cos θ = − 3 (N/A)
θ = 120° = 360°.k or θ =  240° + 360.k , 𝑥 ∈ ℤ

 ✓  2 cos2 − 1
 ✓ standard form
 ✓  factors
✓ cos θ  = −½ or  cos θ = − 3 
✓ θ = 120° = 360°.k 
✓ θ =  240° + 360.k     (6)

     [25]

 

QUESTION 6

 6.1   b = ½   ✓  answer (1)
 6.2  A(30°;1)  ✓ 30°
 ✓ 1   (2)
 6.3  g(90°) = cos(90° − 30°)
            = cos 60°
             =½
Q(90°;½)

✓  90°
 ✓ ½
 (2)
 6.4  x = 160°  ✓ x = 160°   (1)
 6.5  −1 ≤ y ≤ 3  y ∈ R OR
 y ∈ [−1;3]
 ✓✓ answer
 (2)
     [8]

 

QUESTION 7

 7.1    ∠ LNM 180° − 2p ( angles opp. = sides)  

✓answer

✓reason   (2)

 7.2          LM           =     d    

sin(180° − 2p )      sin p
  LM     =   d    
sin 2p      sin p
LM =  d sin 2p
             sin p

 ✓for applying th sine rule

 ✓sin 2p

(2)

 7.3 tan q =  h  

            LM
h = LM tan  q
h  = d sin 2p . tan q
         sin p
h =  2d sin p cos p tan q
                    sin p
h = 2d cos p tan q

 ✓tan q =  h  

            LM

✓h  = d sin 2p . tan q
           sin p
✓h =  2d sin p cos p tan q  
                    sin p
(3)

     [7]

 

QUESTION 8

 8.1   bisects the chord   ✓ answer   (1)
 8.2  EB 8 − y

In ΔAEB: 102 = x2 +  (8 − y)2 ...………….(1) 
Eqn of the circle 
x2 + y2 = 64
x2 =  64 − y2………………..(2)
Subst. (2) into (1)
100 = 64 − y2 + 64 −16y + y2
100 = 128 − 16y
16y = 28
y = 7/4 
∴ OE = 7/4 

  ✓ for EB

 ✓Pythagoras in Δ AEB

 

 ✓ equation of the circle 

 ✓substitution

 ✓answer

 

 (5)

 8.3   Double the size of the angle subtended by the same arc.   ✓ answer (1)
 8.4.1   Maths PP2 Ans 8.4.1 sept 2020 (∠ at centre = 2 x ∠ at the circumference  ✓statement
 ✓reason   (2)
 8.4.2  Maths PP2 Ans 8.4.2 sept 2020 (∠s opp = sides)  ✓ statement
✓ reason  (2)
 8.4.3  Maths PP2 Ans 8.4.3 sept 2020 (opp. ∠s of a cyclic quad)  ✓statement
 ✓reason  (2)
 8.4.4  Maths PP2 Ans 8.4.4 sept 2020 (∠s in the smae segment)  ✓statement
 ✓reason  (2)
     [15]

 

QUESTION 9 

 9.1   ∠ PCQ = 80°( ∠ s opp = sides)
 ∠PCB  = 100° (∠s on a straight line)
∴BC is not a diameter (angle between the tangent
and BC is not equal to 90°
✓statement 
✓reason
✓statement
✓reason 
✓conclusion 
 9.2 P1 = B  (alt ∠ s, PQ || AB)
B = C3  (s opp = sides; radii)
C3 = C1 ( vert. opp. angles) 
∴P1 = C1
∴PQ = QC (sides opp = angles)
 ✓statement 
✓reason
✓statement
✓reason 
✓statement
✓ statement and reason 
 9.3  A=E2 (ext. ∠ of a cq)
D = 180° − E2 (co–interior ∠s; BE || CD)
D+A 180°
ˆACDF is a cq (opp ∠ s supplementary) 
                  OR
D=E1(corres. ∠ s; BE || CD)
E2 = 180° − E1 (∠ s on a straight line)
 A = 180° − E1   (opp ∠ s of a cq)
D+A = 180°
∴ ACDF is a cyclic quad.
(opp ∠ s of a quad. supplementary)

✓statement 
✓reason
✓statement and reason
✓statement and reason 
✓reason 

✓statement 

✓reason
✓statement and reason
✓statement and reason 
✓reason 

     [16]

 

QUESTION 10

 10.1

 Maths PP2 Ans 10.1 sept 2020

RTP :  MS = MT
           SO    TN
Construction: Join SN, and OT, and construct perpendicular heights 
Proof :
Maths PP2 Ans 10.1c sept 2020
But ΔMST is common 
And area of ΔOST = area of ΔTNS (same base, same height)
MS = MT
   SO    TN

 area 

 

 

 

 

 

 

 

 

 

 

✓area of the two triangles 

 MS
    SO

✓area of the two triangles 

MT
   TN

✓ statement and reason
(5)

 10.2.1  In ΔAPS and Δ BRS
P4 = R1   (tan – chord theorem)
A = B2 =  90° (given) / (gegee)
 ΔAPS ||| ΔBRS (AAA) 
✓statement and reason 
✓statement
✓3 rd ∠
    OR
✓reason for similarity   (3)
 10.2.2  AP = PS = AS   (similar triangles)
 BR    RS    BS
∴ AP.RS = BR,PS 
 ✓for the statement
(1)
 10.2.3  P2 =  90° (∠s in a semi – circle)
Let P4 = x
 ∴ S1 = 90 − x (∠s of APS) 
∴ Q 90 − x (ext ∠ of a cq) 
∴ R2 = x (∠s of QPR)
∴ P4 = R2
 ✓P2 = 90
(in a semi – circle) 
✓S1 =  90 – x
✓Q = 90 – x
✓R2 = x
(4)
 10.2.4  In ΔASP and ΔPQR 
A = P2 (proven)
P4 = R2   (proven)
ΔASP ||| ΔPQR  (AAA) 
AS = SP = AP      (similar triangles)
PQ   QR    PR
∴AP . QR = SP . PR
AP = PR
   PS    RQ
But  AP = BR
       PS    RS       (from 10.2)
∴ PR = BR
   RQ    RS
∴ BR.RQ = RS.RP

✓statement and reason 
✓statement
✓reason for similarity 

 

✓∴ AP = PR
      PS    RQ

AP = BR
   PS    RS

✓ ∴ PR  = BR 
       RQ     RS

 (6)

     [19]

 

TOTAL : 150

Last modified on Friday, 18 February 2022 07:26