QUESTION 1
1.1 | 1.1.1 | 0 = (3x − 2)(x + 1) x = 2/3 or x = −1 | ✓ x = 2/3 ✓x = −1 | A | (2) |
1.1.2 | 7x2 + 9x − 4 = 0 | ✓ Formula ✓x = −1,64 ✓ x = 0,35 R | A CA | (4) | |
1.1.3 | −6x2 < 5x | ✓Factors M ✓Both critical values NPR ✓✓Correct notation for each interval | A CA CA CA | (4) | |
1.2 | x+ 3y = 1.................(1) 2x2 + 2y2 = −5xy .....(2)
OR x+ 3y = 1.................(1) 2x2 + 2y2 = −5xy .....(2) |
✓Equation 3 M ✓Substitution ✓Simplification ✓Standard form ✓Substitution ✓Both y values ✓Both x values |
A CA S S SF CA CA | (7) | |
1.3 | 1.3.1 | 5,425 rev/ min = 5,425 rev 60sec | ✓ 0,09 rev/sec | A | (1) |
1.3.2 | 5,425 rev / min = 9 × 10−2 rev / sec | ✓ 9 × 10−2 rev / sec NPU | CA | (1) | |
1.4 | 1011112 = 1 × 25 + 0 × 24 + 1 × 22 + 1 × 21 + 1 × 20 = 32+ 8 + 4+ 2 + 1 = 47 AO: Full Marks | ✓ Method ✓ 47 | A A | (2) | |
[21] |
QUESTION 2
2.1 | −x2 + 9x − 2 = 0 b2 − 4ac = 92 − 4(−1)(−2) b2 − 4ac = 73 Roots are real, irrational and unequal | ✓ Substitution ✓ Δ = 73 ✓ Nature of roots | SF CA CA | (3) |
2.2 | −x2 + 9x − c = 0 b2 − 4ac < 0 92 − 4(−1)(c) <0 4c < −81 c < −81 4 | ✓ Δ < 0 ✓Substitution | A CA | (4) |
[7] |
QUESTION 3
3.1 | 3.1.1 | = 1 + 768 = 769 |
✓Prime bases
✓Factorisation
✓Simplification
✓Simplification |
A
CA
CA
CA | (4) |
3.1.2 | = −3x2 + 5x2 = 2x2 | ✓Prime bases
✓Simplification | A CA | (3) | |
3.1.3 | log232 ÷ 2 log 5 25 =5/4 | ✓Prime bases
✓Simplification | A CA CA | (3) | |
3.2 | Log 2 (8x3 − 1) − log 100 = log 2 (4x2 + 2x + 1) OR Log 2 (8x3 − 1) − log 100 = log 2 (4x2 + 2x + 1) |
✓ Log property ✓ Factors ✓log property ✓ Exponential form ✓ Simplification |
A A A CA CA | (5) | |
3.3 | z = −3 + i√3 IzI = √((−3)2 + (√3)2) IzI = √12 IzI = 2√3 tan θ = √3/3 θ = tan−1 (√3/3) θ = 30° (Reference Angle) θ = 180° − 30° = 150° z = 2√3(cos 150° + i sin 150°) |
✓Substitution ✓Modulus ✓tan ratio ✓Reference angle ✓Polar form |
A CA A CA CA | (5) | |
3.4 | y − i = 3xi OR y − i × 2 + i = 3xi |
✓Conjugate product ✓i2 = −1
✓x = −1/6 ✓ y = −½ |
A CA
CA CA | (4) | |
[24] |
QUESTION 4
4.1 | 4.1.1 | 0 = − 6/x + 2 6/x = 2 x = 3 | ✓Equating to 0 | A A | (2) |
4.1.2 | 0 = x2 − x − 6 0 = (x − 3) ( x + 2) x = 3 or x = −2 | ✓Factors ✓ x = 3 ✓ x = −2 | A CA CA | (3) | |
4.1.3 | y = −6 | ✓y = −6 | A | (1) | |
4.1.4 | x = 0 and y = 2 | ✓ x = 0 ✓ y = 2 | A A | (2) | |
4.1.5 | Axis of symmetry OR g'(x) = 2x − 1 | ✓M ✓x =½ ✓y-coordinate
✓ g' (x) =0 ✓ x = ½
✓y-coordinate | A CA CA
A CA
CA | (3) | |
4.1.6 |
CA CA CA | (6) | |||
4.1.7 | x ≠ 0 OR x < 0 ∪ x > 0 | ✓x ≠ 0 | CA | (1) | |
4.1.8 | x ≥ 3 OR x ∈ [3;∞] | ✓ x ≥ 3 | CA | (1) | |
4.2 | 4.2.1 | r2 = (0)2 + (−2)2 = 4 y = − √(4 − x2) | ✓r2 = 4 ✓ Equation | A CA | (2) |
4.2.2 | y = 2x + q −2 = 20 + q −2 = 1 + q q = −3 | ✓SF | A CA | (2) | |
4.2.3 | y = 2x − 3 0 = 2x − 3 3 = 2x x = log 2 3 x = 1,58 A(1,58; 0) |
✓Substitution ✓Logarithm Property ✓1,58 |
A CA CA | (3) | |
4.2.4 | y > −3 | ✓ y > −3 | A | (1) | |
[27] |
QUESTION 5
5.1 | Depreciation value = 8,8 × 800 000 = R70 400 100 Current Asset value = R800 000 − R70 400 = R729 600 OR Current Asset value = 91,2% × R800 000 = R729 600 | ✓ R729 600 | A | (1) | |
5.2 | 5.2.1 | Infected people = 9 | ✓9 | A | (1) |
5.2.2 | A = P(1 + i)n i = 0,0539 ∴ daily infection rate = 5,39% | ✓Substitution
✓i
✓5,39% | SF
CA
CA | (3) | |
5.2.3 | 2P = P (1 0,0339)n 2 (1,0339)n n = log1,0339 2 ∴ n = 21 days | ✓Substitution ✓Log law ✓n=21 | A A CA | (3) | |
5.3 | A4 = P(1 + i)n A4 = P(1 + i/12)12n A4 = x(1 + 0,065/12)12×4 A = A4(1 + i/2)2n 800 000 = x(1 + 0,065)12×4 (1 + 0,07)2×6 12 2 ∴ x = R 408 501,77 |
✓ Substitute SF ✓Substitute i and n SF ✓Substitution SF ✓Simplification S ✓R 408 501,77 |
A A CA CA CA | (5)
| |
[13] |
QUESTION 6
6.1 | ƒ(x) = −½x + π ƒ' (x) = limh→0 ƒ(x + h) −ƒ(x) h ƒ' (x) = limh→0 −½(x + h) + π −(−½x + π) h ƒ' (x) = limh→0 −½x −½h + π + ½x −π h ƒ' (x) = limh→0 −½h h ƒ' (x) = limh→0 −½ ∴ ƒ' (x) = −½ |
✓Definition ✓Substitution SF ✓Simplification S
✓Simplification S ƒ' (x) = −½ |
A A CA
CA CA | (5) | |
6.2 | 6.2.1 | Dx (9π − 14x−½) |
✓Simplification S
✓Simplification S
✓Derivative |
A
A
CA | (3) |
6.2.2 | 2xy + x = x−9 ∴ dy/dx = −5x−11 |
✓y Subject ✓✓Simplification S ✓−5x−11
| A CA CA CA
| (4) | |
6.3 | = −3 = 1 −2−x1 −3 = −2 −x1 ∴ x1 = 1 or Avarage gradient = −3 = 1 x1 + 2 −3 = x1 + 2 ∴ x1 = −5 | ✓Definition
✓Substitution
✓1
✓−5 | A
A
CA
CA | (4) | |
[16] |
QUESTION 7
7.1 | y=2 | ✓ | A | (1) |
7.2 | h(½) = 2(½)3 + (½)2 − 5(½) + 2 = 0 Since h(½) = 0, then x = ½ is the x -intercept | ✓h(½) = 0 | A A | (2) |
7.3 | (2x2 + 2x − 4) ( x− ½) = 0 (2x − 2)(x+2)(x − ½) = 0 x = −2 or x = 1 |
✓ 2x2 + 2x − 4 ✓(x + 2) (2x − 2) ✓ x = −2 or x = 1 |
A CA CA | (3) |
7.4 | h'(x) = 6x2 + 2x − 5 = 0 y = 2(−1,09)3 +(−1,09)2 −5 (−1,09) + 2 = 6,05 | ✓h' (x) = 6x2 + 2x −5 ✓h' (x) =0
✓Substitution ✓Both x values ✓Both y values | A A
CA CA CA | (5) |
7.5 |
✓Shape
✓x-intercepts ✓y-intercepts ✓Turning points |
A
CA CA CA
| 95) | |
7.6 | h'(x) = 6x2 + 2x − 5 = mtangent mtangent = − 5 | ✓ mtangent = h'(x) = 6x2 + 2x − 5 = ✓ mtangent = − 5 at x = 0 ✓Substitution SF | A A | (4) |
[20] |
QUESTION 8
8.1 | S(t) = 3 + 6t −¾t2AO: FULL MARKS Truck weight = S(0) = 3 + 6(0) −¾(0)2 =3m | ✓ 3m | A | (1) |
8.2 | S(t) = 3 + 6t −¾t2AO: FULL MARKS S(2) = 3 + 6(2) −¾(2)2 S(2) = 12m | ✓Substitution ✓12m | A CA | (2) |
8.3 | S(t) = 3 + 6t −¾t2 S'(t) = 6 − 3/2 t 6 − 3/2t = 0 t = 4s |
✓S'(t) |
A | (3) |
8.4 | Maximum Height = S(4) = 3 + 6(4) −¾(4) OR 3 + 6t −¾t2 = 16 | ✓Substitution
✓Equating to 16 ✓Non-real | A
A A CA | (4) |
QUESTION 9
9.1 | 9.1.1. | ✓ Exponential form S
✓c
✓
| A
A
CA | (3) | |
9.1.2 | In x + 5x−1 + c | ✓Fraction S ✓In x ✓5x−1 + c | A A CA | (3) | |
9.2 | = − ( −8/3 + 8) ∴ Area = 16/3 ≈ 5,33 | ✓Area notation ✓Integral/ ✓Substitution ✓ Substitution ✓Simplification ✓ Correct value of the bounded area | A A CA CA CA CA | (6) | |
[12] | |||||
TOTAL | 150 |