Marking Codes

Accuracy

CA 

Consistent accuracy

Method

Rounding

NPR 

No penalty for rounding

NPU 

No penalty for units omitted

Simplification

SF 

Substitution in the correct formula

AO 

Answer only

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed-out version.
  • Consistent accuracy (CA) applies to ALL aspects of the marking guideline.
  • Assuming answers/values to solve a problem is NOT acceptable.
QUESTION 1
1.1 1.1.1  x(x - 5) = 6
x2 - 5x = 6
x2 - 5x - 6 = 0
(x - 6)(x + 1) = 0
x = 6  or   x = -1
√ Expansion
√standard form
√factors
√x = 6   or  x = -1
(4)
  OR 
    x(x - 5) = 6
x2 - 5x = 6
x2 - 5x - 6 = 0
1.1.1 UAUYDA
x = 6   or     x = -1
√expansion
√standard form
√substitution
√x = 6 or x = -1
  1.1.2 -2x2 - 4x - 1 =  0
1.1.2 gytgfytda
√ formula
√substitution
√both values of x
(4)
  1.1.3 1.1.3 auygyda √ critical values
√ correct notation
   or
√ number line
1.2 1.2.1 20 seconds √ 20 (1)
  1.2.2 20 seconds = 20 hours 
                       60 × 60
√ 20 hours 
    60 × 60
(1)
  1.2.3 20 hours = 5,55 × 10-3 hours
60 × 60
√Notation (1)
1.3   x/y = 2 ...............................(1)
x2 + xy + y = 2 ..................(2)
x = 2y ................................(3)
Then
(2y)2 + (2y)y + y = 2
4y2 + 2y2 + y - 2 = 0
6y2 + y - 2 = 0
(2y - 1)(3y + 2) = 0
√ x- the subject
√ substitution by
√ simplification/std form
√factors
√ y-values
√ x-values
(6)
  OR
    x/y = 2 ...............................(1)
x2 + xy + y = 2 ..................(2)
x/2 = y ................................(3)
Then,
x2 + x(x/2) + x/2 = 2
2x2 + x2 + x = 4
3x2 + x - 4 = 0
(3x + 4)(x - 1) = 0
x = -4/3   or   x = 1
therefore: y = -2/3   or   y = 1/2
√ y-the subject
√ substitute ; x/2 = y
√ simplification / std form
√factors
√ x - values
√ y- values
1.4 1.4.1

b = 2a = 2 × 2 = 4
and 
c = 2b  = 2 × 4 = 8

√ b = 4
√ c = 8
(2)
  1.4.2 b2 - 4ac = (4)2 - 4(2)(8)
= 16 - 64
b2 - 4ac = -48
therefore; roots are non-real imaginary
√ Δ = -48
√ imaginary / non-real
(2)
1.5  

41 = 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 ×21 + 1 × 20
= 1010012
OR
41 = 32 + 8 + 1
= 1010012

-1 mark if base 2 is omitted
AO = 2/2

√ method
√ 1010012
(2)
        [26]
2.1 2.1.1 2.1.1 YTFAYTDA √ Prime factors
√ CF numerator
√ CF denominator
3/2
(4)
  OR
    2.1.1 SXDCFVGBHNJMK √ same base
√ CF numerator
√ CF denominator
3/2
  2.1.2 2.1.2 auygda √ log8-1
√ same base rule
√ -3/5
(3)
  OR
    2.12 AYGHDU √ log 1 - log 8 
√ same base rule
√ -3/5
2.2  

2(x - y)(x - y)
= 2(√2 - √3)(√2 + √3)
= 2 (2 - 3)
= -2

OR

2(x - y)(x + y)
= 2(x2 - y2)
= 2 [ (√2)2 - (√3)2]
= 2(2 - 3)
= -2

√ substitution
√ expansion
√ simplification
 
2.3   2.3 autgdytagd
2.3 b uygauyda
√ 3x+1 = 1
√ 3x/2 = 2
√ 0 exponent rule
√ log form 3x + 1 = 1
√ same base
√ x = -1
3x/2 = 2
√ x = 2log32
√ x = 1,26
 
    OR  
    2.3 C AUGDUAY √ 3x+1 = 1
√ 3x/2 = 2
√ log31
√ log32
√ x + 1 = 0
√ x = 2log32
√ x = -1
√ x = 1,26
 
2.4   3x = -3  and -5y = 0
x = -1   and y  = 0
√ equating parameters
√ x = -1
√ y = 0
 
2.5   2.5 uyagydad √ finding r
2.5 ans uiah
√ reference angle
√ θ = 310,88º
√ correct form
(6)
        [27]
QUESTION 3
3.1   y = -4 √ y = -4  
3.2   3x - 4 = 0
3x = 4
x = log34
x = 1,26
√ f(x) = 0
√ log form
√ x = 1,26
(3)
3.3   f(x) = 3x - 4
f(0) = 3º - 4
y = -3
√ subst.  x = 0
√ y = -3
(2)
3.4   3.4 avyuagd √ shape 
√ both intercepts
√ asymptote
(3)
3.5   y > -4   or   y∈(-4;∞)    or    -4<y<∞ √ -4   (1)
        [10]
QUESTION 4
4.1   B(0;2) √B(2;0) (1)
4.2   4.2 IAHYDA √ substitution
√ g(x) = √4 - x2
(2)
4.3   x∈[-2;2]
OR
-2 ≤ x ≤ 2
OR
x ≥ -2  and x ≤ 2
√ critical values
from 4.1
√ notation 
(2)
4.4   x∈(-2;0)   OR   -2 < x < 0  √ critical values 
from
√ notation
(2)
        [7]
QUESTION 5
5.1   h(0) = -(0)2 + 4(0) - 3 = -3
c(0;-3)
√ 0
√ -3
(2)
5.2   m(x) = p/x - 3
-1 = p/1 - 3
p = 2
√ substitution
√ p = 2
(2)
5.3   m(x) = 2/x - 3 √ substitute 2 and -3 (1)
5.4   x = -b/2a
=   -4     
  2(-1)
= 2
h(2) = -(2)2 + 4(2) - 3
= 1
D(2;1)
√ substitution
√ x = 2
√ h(2)
√ D(2;1)
(4)
    OR
    h'(x) = -2x + 4
= 0
therefore x = 2
h(2) = -(2)2 + 4(2) - 3
= 1
D(2;1)
√ h'(x) = -2x + 4
√ x = 2
√ h(2)
√ D(2;1)
    OR
    (-x + 1) (x - 3) = 0
x = 1  or   x = 3
therefore axis of symmetry 
x = 1 + 3 = 2
         2
h(2) = - (2)2 + 4(2) - 3 = 1
D(2;1)
√ x-intercepts
√ x = 2
√ h(2)
√ D(2;1)
5.5   DE = 1 + 3 = 4 units √ OE + OD
√ 4
 
QUESTION 6
6.1   6.1 agdtagd √ formula
√ substitution
√ ieff ≈ 6.4%
 
6.2     A = P (1 - in)
40 000 = P(1 - 0,1 × 3)
P =    40000     = R57 142,86
     (1 - 0,1 × 3)
√ substitute i and n
√ substitution
√ P subject 
√ simplification
 
6.3  

6.3 auyygduyagd

P6 = R502 839, 7713 - R150 000
P6 = R352 839,7713

A10 = R 352 839, 7713 (1 + 0,07)4
A10 = R 462 500,96

√ values of i and n
√ substitute P, i and n
√ A6
√ P6
√substitution P6, i and n 
√ value of A10
  (6)
    OR
     6.3 a uayguydga
A6 = R502 839, 7713
A6(1) = R 502 839, 7713 (1 + 0,07)4
A6(1) = R 659 120,3659
A7(1) = R 150 000(1 +0,07)4
A7(1) = R 196 619, 4015
A10 = R 659 120, 3659 - R 196 619, 4015
A10 = R 462 500, 96
√values of i and n
√ substitute P, i and n 
√ A6
√ P6
√ A6
√ P6
√ A 2(1)
√ A6
√ P6
√ value of A10
        [13]
QUESTIONS 7
7.1   7.1 AUYYGDUAD √ definition
√ substitution
√ simplification
√ simplification
√ f'(x) = -2
(5)
7.2   7.2 aghdaygda √ (x - 2)(x2 + 2x + 4)
√ simplification
√ 12
(3)
7.3 7.3.1 y = -   3     - 2x2 + 2x
        5x2
y =     3x-2    - 2x2 + 2x
          5
dy = 6x-3   - 4x + 2
dx     5
√  -   3     
      5x2
√ 6x-3  
   5
√  - 4x
√ 2

(4)
  7.3.2 7.3.2 autgda √ x 2/3
2/3x-1/3
√ 6x-4
(3)
        [15]
QUESTION 8
8.1 8.1.1 y = -4 √ y = -4 (1)
  8.1.2 f(x) = (1 - 2x)(x2 - 4)
0 = (1 - 2x) (x2 - 4)
x = ½  or    x = 2   or  x = -2
√ f(x) = 0
√ x = ½
√ x = ± 2
(3)
  8.1.3 f(x) = -2x3 + x2 + 8x - 4 √ f(x) = -2x3 + x2 + 8x - 4 (1)
  8.1.4 f(x) = -2x3 + x2 + 8x - 4
f'(x) = -6x2 + 2x + 8
0 = -6x2 + 2x + 8
0 = 3x2 - x - 4
0 = (x + 1) (3x - 4)
x = 4/3
8.1.4 ajhbduad
√ f(x) CA from 8.3
√ f'(x) = 0
√ factors
√ x = 4/3
√ [100]
   [ 27 ]
(5)
  8.1.5 8.1.5 jagudyad √ x-intercept
√ y-intercept
√ turning points
√ shape
(4)
8.2   Average gradient
= g(a) - g(4) = 9
       a - 4
(2a2 - a - 3) - 25 = 9
        a - 4
2a2 - a - 28 = 9a - 36
2a2 - 10a + 8 = 0
a2 - 5a + 4 = 0
(a - 4) (a - 1) = 0
a = 1
√ g(a) - g(4) 
       a - 4
√ = 9
√ STD form
√ factors
√ a = 1
(5)
        [19]
QUESTION 9
9 9.1 V(t) = t2 - 9t + 35
V(0) = (0)2 - 9(0) + 35 = 35L
√ substitution
√ V(0) = 35L
(2)
  9.2 V(t) = t2 - 9t + 35
V(1) = (1)2 - 9(1) + 35 = 27L
√ substitution
√ V(1) = 27L
(2)
  9.3 V(t) = t2 - 9t + 35
V'(t) = 2t - 9
V'(t) = 2t - 9 = 0
t = 9/2
√ V'(t)
√ V'(t) = 0
√ t = 9/2
(2)
  9.4 maximum  amount of fuel leaked
9.4 aygda
√ substitution
√ V ≈ 14,75L
 
QUESTION 10
10.1   10.1 ygduaygduya x3
   3
√ 3inx
√ x
√ c
 
10.2 10.2.1 10.2 yfgayfda √ integral function
√ correct lower and upper bounds
√ simplification
√ substitute 3,41
√ substitute 0,59
√ 5,64
(6)
  10.2.2 Striped A = A under f (x) – A under g(x)
Striped area =5,64−3,5
Striped area =2,13 square units
√ difference
√ substitution
√ 2,13 square units
(3)
        [13]
      TOTAL 150
Last modified on Thursday, 10 February 2022 11:39