NOTE:

  • If a candidate answers a question TWICE, mark the FIRST attempt ONLY.
  • Consistent accuracy applies in ALL aspects of the marking guideline.
  • If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
  • The mark for substitution is awarded for substitution into the correct formula.

MARKING SCHEMES

QUESTION 1 
1.1.1 x2 - 3x - 4 = 0
(x + 1)(x - 4) = 0
x = -1 or 4
Answerd only: (2/3)
OR
can use quadratic formula
1 ajgda
∴ x = 4  or x = -1
√ Factors
√ x = -1
√ x = 4
√ correct substitution
√ √ answers  (3)
11.2.2 2x2 - x - 7 = 0
11.2.2 afytda
penalise 1 mark for incorrect rounding off
x = 2,14    or   -1,64
√ substitution
√ x = 2,14
√ x = -1,64
1.1.3 5x+1 - 5x = 2500
5x.51 - 5x = 2500
5x(5 - 1) = 2500
5x.4 = 2500
5x = 625
5x = 54
∴ x = 4
√ factorisation
√ 5x = 625
√ x =4
1.1.4 (x - 3)(x + 1) < 12
x2 - 2x - 3 - 12 < 0
x2 - 2x - 15 < 0
(x - 5)(x + 3) < 0
OR
1.1.4auydad
-3 < x < 5   OR   x∈(-3;5)
√ standard form
√ factorisation
√√ -3 < x < 5 (accuracy)
1.2

y = 2x - 1   .......... (1)
3x2 - xy - y2 = 1   ......(2)
(1) into (2)
3x2 - x(2x - 1) - (2x - 1)2 = 1
3x2 - 2x2 + x - (4x2 - 4x + 1) = 1
3x2 - 2x2 + x - 4x2 + 4x + 1 - 1 = 0
-3x2 + 5x - 2 = 0
(3x - 2) (x - 1) = 0
∴ x = 2/  or  x=1
y = 2(2/3) - 1   or    y = 2(1) - 1
y = 1/3    or   y = 1

OR

x = y + 1  .......(1)
         2
3x2 - xy - y2 = 1 .....(2)
(1) into (2)
1.2 auygda
3y2 + 6y + 3 - 2y2 - 2y - 4y2 - 4 = 0
-3y3 + 4y - 1 = 0
3y2 - 4y + 1 = 0
(3y - 1)(y - 1) = 0
∴ y = 1/3    or   y = 1
1.2 234 aduya

√ y = 2x - 1
√ substitution
√ standard form
√ factorisation
√ x-values
√ y-values

 

OR

 

√ x = y + 1
            2
√ substitution
√ standard form
√ factorisation
√ y-values
√ x-values

1.3 

f(x) = x2 - 2px + 8 + 2p
For equal roots:
b2 - 4ac = 0
(-2p)2 - 4(1)(2p + 8) = 0
4p2 - 8p - 32 = 0
p2 - 2p - 8 = 0
∴ p = -2  or  p = 4
but : p < 0 ⇒ p = -2

so, f(x) = x2 + 4x + 4
∴ h(x) = x2 + 4x + 1
= x2 + 4x + 4 - 4 + 1
= (x + 2)2 - 3
∴ TP:(-2;-3)

OR

b2 - 4ac = 0
(-2p)2 - 4(1)(8 + 2p) = 0
4p2 - 8p - 32 = 0
p2 - 2p - 8 = 0
(p - 4)(p + 2) = 0
∴ p # 4   or  p = -2
∴ turning point of (-2;0)
∴ turning point of (-2;-3)

√ b2 - 4ac = 0
√ substitution
√ p-values
√ h(x) = x2 + 4x + 1
√ answer in coordinate form
√ b2 - 4ac = 0
√ substitution

 

 

√ p values
√ (-2;0)
√ (-2;-3)

 

√ b2 - 4ac = 0
√ substitution
√ p values
√ (-2;0)
√ (-2;-3)

 2.1.1 2.1.1 auygda
-17;-2
√ both terms
2.1.2 2a = -2     3a + b = -2        a + b + c = 3
∴ a = -1    3(-1) + b = -2     -1 + 1 + c = 3
∴ b = 1   ∴ c = 3
Tn = -n2 + n + 3
√ a = -1
√ b = 1
√ c = 3
√ Tn = -n2 + n + 3
2.1.3 -n2 + n + 3 = -809
n2 - n - 812 = 0
(n - 29)(n + 28) = 0
∴ n = 29
√ equating Tn to -809
√ factors
√ choosing n = 29

2.2.1 Tn = 2n - 3
T53 = 2(53) - 3
= 103
OR
T53 = a + 52d
= -1 + 52(2)
= 103
√ substitution into T53
√ answer
√ substitution into T53
√ 103
2.2.2 2.2.2 ajgda √ substitution into correct formula
√ 783
2.2.3 2.2.3 aytfda √ 29 n 1 auyygda
√ 2n - 3
2.3 T4 = a + 3d   and    T10 = a + 9d
∴ T10 - T4 = 6d
6d = (8x - 2y) - (2x + y)
= 6x - 3y
∴ d = x - ½y
T4 = a + 3d
2x + y = a + 3(x - ½y)
2x + y = a + 3x - 3/2y
∴ a = 5/2y - x
√ T10 - T4 = 6d
√ 6d = (8x - 2y) - (2x + y)
√ d = x - ½y
√ substitution 
√ value of a
QUESTION 3
3.1

T1 = (x - 1)
T2 = (x - 1)2
∴ r = x - 1
for convergence:
-1 < r < 1
∴ -1 < x -1 < 1
0 < x < 2

√ -1 < r < 1
√ answer
3.2 When: 
3.2 uaygyda
√ substituting for x
√ values for a and r
√ substituting into S∞ formula
√ answer
QUESTION 4
4.1 x = -3
y = 1
√ x = -3
√ y = 1
4.2 1 +   2     =  0 
    x  + 3
   2   = -1
x + 3
2 = -x - 3
x = -5
y = 1 +    2    
            0 + 3
= 5/3
√ substitution
√ x -intercept
√ y-intercept
4.3 4.3 auyghda

√ asymptotes
√ x -intercept
√ y-intercept
√ shape

4.4

h(x) =   -2     - 1
          x + 3
point of intersection of asymptotes
(-3;-1)   or    y = -(-x - p) + q
y = (x - (-3)) - 1    or    y = -(-x - 3) - 1
y = x + 2

OR

h(x) =   -2     - 1
          x + 3
point of intersection of asymptotes
(-3;-1) 
y = x + k
-1 = -3 + k
k = 2
∴ y = x + 2

√ h(x) =   -2     - 1
             x + 3
√ substitute point of intersection of asymptotes
√√ answer

 

 

 

√ h(x) =   -2     - 1
             x + 3
√ substitute point of intersection of asymptotes
√√ answer

QUESTION 5
5.1 (0;-8) √ answer
5.2

y = mx + c
y = mx - 8
10 = 9m - 8
m = 2
∴ y = 2x - 8

OR

mTQ = 10 - (-8)
             9 - 0
m = 2
∴ y = 2x - 8

√ c = -8
√ substituting T(9;10) into equation of line 
√ equation 
5.3 y = x2 - 7x - 8
= x2 - 7x + (-7/2)2 - 8 - (-7/2)2
= (x - 7/2)2 - 81/4
√ completing the square
√ equation
5.4 (7/2 ; -81/4) √ x-coordinate
√ y-coordinate
5.5

Ave gradient
y - 10 = 1
x - 9
y - 10 = x - 9
y = x + 1
f(x) = x2 - 7x - 8
x + 1 = x2 - 7x - 8
0 = x2 - 8x - 9
0 = (x - 9)(x + 1)
∴ x = 9  or   -1
y = 10  or   0
∴ w(-1 ; 0)

OR

x2 - 7x - 8 - (10) = 1
      x - (9)
x2 - 7x - 18 = x - 9
x2 - 8x - 9 = 0
(x - 9)(x + 1) = 0
x = 9  or   x = -1
y = 10  or  y = 0
∴ w(-1 ; 0)

OR

f'(x) = 2x - 7
f'(9) = 2(9) - 7
= 11
f'(9) + f'(x) = 1
       2
11 + 2x - 7 = 1
       2
2x + 4 = 1
    2
x + 1 = 1
x = -1
y = 0
∴ w(-1 ; 0)

√ method
√ making y the subject
√ equating 2 equations
√ factors
√ specifying coordinates for W 

 

 

 

 

 

 

 

√ x2 - 7x - 8 - (10) = 1
         x - (9)

 

√ equating to 1 
√ standard form
√ factors
√ specifying coordinates for W.



√ f'(x) = 2x - 7
√ f'(9) = 2(9) - 7
√ average gradient = 1
√ substitution
√ coordinates of W

5.6

x2 - 7x - 8 = 0
(x - 8)(x + 1) = 0
∴ P(-1;0) and  R(8;0)
y = 2x - 8
0 = 2x - 8
∴ V(4;0)

∴ x < -1   or  4 < x < 8
OR
x∈(-∞;-1)∪(4;8)

√ x intercepts of f
√ x intercept of g
√ x < -1 accuracy
√ 4 <  x < 8 accuracy
QUESTION 6
6.1 f(x) = logmx
3 =  logm64
m3 = 64
m3 = 43
∴ m = 4
√ substitution
√ answer
6.2 f(x) = log4x
∴ f-1 : x = log4x
y = 4x
√ interchanging x and y
√ answer
6.3 6. 3 aiuhdua √ y-intercept
√ shape and asymptote
6.4 y > -2
OR
y∈ (-2; ∞) 
√ answer
OR
√ answer
QUESTION 7
7.1 7.1 AHHDUA √ substitution into correct formula
√ simplification 
√ value for r
7.2.1 7.2.1 auygda
= R14 018,28 
√ i = 0.115/12 and n =180
√  substituting into correct formula
√  answer
7.2.2 (a)

7.2.2 jaguyda

OR

7.2.2 a uyaghuyda

= 2 453 828, 34 - 1528 392,76
= R 925 435, 58

Outstanding balance after 80 months;

= 925 435,58 [1 + 11,5%]5
                                12
= R 970 637,48

√ 𝑛 = 105 for P and
√ 𝑛 = 5 for  A
√ substituting into correct P formula
√  substituting into correct A formula
√  𝑃(1 + 0,115)5
                12 
√ answer

√ 𝑛 = 75 for both formulae 
√ substituting into correct F formula
√ substituting into correct A formula

 

√ P(1 + 0,115)5
              12
√ answer

7.2.2 (b) 7.2.2 aiuyda

∴ n = 115 months
√ P = R970 637,89
√ substituting into correct formula
√ correct use of logs 
√ final answer
QUESTION 8  
 8.1 8.1 auygda √ 3 - 2x2 - 4hx - 2h2
√ substitution 
√ simplification 
√ factorisation 
√ answer 
8.2.1 8.2.1 uaygda  √ x3 - 4x2 + 4x
√ 3x2
√ - 8x
√ +4
8.2.2 8.2.2 aygda √ -2x½
√ 3/7ax4/7
√ -x
(derivative of constant must be zero to get 3rd mark)
QUESTION 9   
9.1  x = -1/3 and x = 1 √  x = -1/3 
√ x = 1
9.2 x = (1 + (-1/3)) ÷ 2
 = 1/3
√√ answer
9.3 g(x) is increasing when g'(x) > 0
-1/3  < x <1 OR x∈ (-1/3 ;1)
√√ answer
9.4 

9.4 auygda

OR

9.4 2 ahugduayd

√ substituting all intercepts
√ a = -3
√ y = -3(x + 1/3)(x -1)
√ g'(x) = -3x2 + 2x +1

 

√ substituting all intercepts
√ a = -1
√ y = -(3x + 1)(x - 1)
√ g'(x) = -3x2 + 2x + 1

9.5 g(x) = ax3 + bx2 + cx + d
g'(x) = 3ax2 + 2bx + c
= -3x2 + 2x + 1
∴ 3a = -3    2b = 2  c = 1
∴ a = -1   b = 1
∴ y = -x3 + x2 + x + d + 1
0 = -03 + 02 + 0 + d + 1
∴ d = -1
√ g'(x) = 3ax2 + 2bx + c
√ 3a = -3
√ 2b = 2
√ a = -1; b = 1; c = 1
√ substitute (0;0) into g(x) + 1
QUESTION 10
10.1

Let the two numbers be x and y :
x + y = 18
∴ y = 18 - x
Product :P(x) = yx2
= (18 - x)x2
= 18x2 - x3
Product is maximum when: P'(x) 0
P'(x) = 36x - 3x2
36x - 3x2 = 0
3x(12 - x) = 0
∴ x = 0 or x = 12
∴ y = 18 - 0 = 18
or y = 18 - 12 = 6
P is maximum when x = 12
∴ the two numbers are: 12 and 6
OR
let the two numbers be x and y
x + y = 18
∴ y = 18 - x
product: P(x) = xy2
=x(18 - x)2
=x(324 - 36x + x2)
= 324x - 36x2 + x3
Product is maximum when: P'(x) = 0
P'(x) = 324 - 72x + 3x2
3x2 - 72x + 324 = 0
x2 - 24x + 108 = 0
(x - 18)(x - 6) = 0
∴ x = 18 - 18 = 0 

or

y = 18 - 6 = 12
∴ The two numbers are 12 and 6

√ x + y =18
√ yx2
√ substitution and simplification
√ P'(x)and equating to0
√ x-values
√ y-values
√ selection of the 2 numbers
(if x = 0, Product = 0)

 


√ x + y =18
√ xy2
√ substitution and simplification

 

 


√ P'(x)and equating to 0
√ x-values
√ y-values
√ selection of the two numbers
(P = 0 when x = 18)

QUESTION 11
11.1.1 a = 111
b = 106
√ answer
√ answer
11.1.2 (a) P(a boy who plays crickcet)
= 108   or  54  
    530       265
√ numerator
√ denominator
11.1.2 (b)

P(A  or B) = P(A) + P(B) - P(A and B)
P(girl or not a tennis player)
= 288 + 445 - 231
   530    530   530
= 502
   530
or  251
     265
or  94,72%

OR

P(girl or not tennis)
= 1 - P (boy and tennis)
= 1 -   28   
         530
= 502
   530
or  251
     265
or  94,72%

√ formula
√ substitution into correct formula
√ answer

 

 

√ method 
√ substitution
√ answer

11.2.1 99 or 387 420 489 √ 99   (1) 
11.2.2 If vowels are together:
6! × 4!
∴ if vowels are not together:
9! - (6! × 4!)
= 345 600
√ 6! × 4!
√ subtracting from 9!
√ answer   (3)
11.2.3 Vowels in odd spaces:
= 4 × 5 × 3 × 4 × 2 × 3 × 1 × 2
= (4 × 3 × 2 × 1) × (5 × 4 × 3 × 2)
= 4! × 120
= 2880
∴ probability =                        2880                 
                       (9 × 8 × 7 × 6 × 5 × 4 × 3 × 2)
=  2880   
  362880
=   1   
   126
√ 4! × 120
           vowels in odd spaces       
     (9 × 8 × 7 × 6 × 5 × 4 × 3 × 2)
√ answer (4)   [15]

TOTAL: 150

Last modified on Friday, 11 February 2022 11:50