MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE EXAMINATIONS
MEMORANDUM
MAY/JUNE 2021
NOTE:
QUESTION 1
1.1.1 x2 - x - 20 = 0
(x - 5)(x + 4) = 0
x = 5 or x = – 4
factors
x = 5
x = –4 (3)
1.1.2 3x2 - 2x - 6 = 0
x =-(-2) ± √(-2)2 -4(3)(-6)
2(3)
x = 1 ± √19
3
x = –1,12 or x = 1,79
substitution
simplification
x = –1,12
x = 1,79 (4)
1.1.3 (x -1)2 > 9
x2 - 2x - 8 > 0
(x - 4)(x + 2) > 0
Critical values: x = 4 or x = - 2
x <-2 or x > 4
OR
(-∞;-2) or (4;∞)
OR
x - 1 > 3 or x -1 < -3
x > 4 or x < -2
standard form
critical values
x > 4 or x < -2 (4)
OR
(-∞;-2) or (4;∞)
OR
x - 1 > 3
x -1 < -3
x > 4 or x < -2 (4)
1.1.4 2√x + 6 + 2 = x
2√x + 6 = x - 2
4(x + 6) = (x - 2)2
4x + 24 = x2 - 4x + 4
x2 - 8x - 20 = 0
(x -10)(x + 2) = 0
x = 10 or x ≠ -2
isolating the surd
4x + 24 = x2 - 4x + 4
x = 10
x ≠ -2
(4)
1.2 4 x = 2 - y . . . (1)
4x + y2 = 8 . . . (2)
∴2 - y + y2 = 8
y2 - y - 6 = 0
( y - 3)( y + 2) = 0
y = 3 or y = –2
x = -¼ or x = 1
OR
y = -4x + 2 . . . (1)
4x + y 2 - 8 . . . (2)
4x + (- 4x + 2)2 = 8
4x +16x2 -16x + 4 - 8 = 0
16x2 -12x - 4 = 0
4x2 - 3x -1 = 0
(4x +1)(x -1) = 0
x = -¼ or x = 1
y = 3 or y = –2
substitution
standard form
y-values
x-values
(5)
OR
y = -4x + 2
substitution
standard form
x-values
y-values
(5)
1.3 2x x 3y = (23 x 3)6
2x x 3y = 218 x 36
2x = 218 and 3y = 36
x = 18 and y = 6
∴ x - y = 18 - 6
∴ x - y = 12
218 or 36
x = 18 and y = 6
answer (A)
(4)
[24]
QUESTION 2
2.1.1
2a = – 8
a = – 4
3a + b = 28
b = 40
a + b + c = 72
c = 36
Tn = 4n2 + 40n + 36
second differences = – 8
a = – 4
b = 40
c = 36
(4)
2.1.2
T12 = 36 - 8n = 36 - 8(12) = -60
-4n2 + 40n + 36 = -60
n2 -10n - 24 = 0
(n - 12)(n + 2) = 0
n = 12
36 – 8n
– 60
standard form
factors
n = 12
(5)
2.1.3
Tn/ = -8n + 40 = 0
n = 5
Tn = -4(5)2 + 40(5) + 36 = 136
OR
- b = 40 = 5
2a 8
Tn = -4(5)2 + 40(5) = 36
= 136
8n - 40
n = 5
136 (3)
OR
substitution
n = 5
136
(3)
2.1.4 Maximum value = 41
value (1)
2.2
2sin 3x -(-11) =15 - 2sin 3x
4sin 3x = 4
sin 3x = 1
3x = 90º
x = 30∘
equating
4sin 3x = 4
sin 3x = 1
answer
(4)
[17]
QUESTION 3
3.1.1
Tn = arn-1 = 2000(1/5)n-1
(1)
3.1.2
T7 = 2000(1/5)7-1 = 16
125
3.1.3
16 = 2000(1/5)n-1
15625
1 = (1/5)n-1
1953125
(1/5)9 = (1/5)n-1
OR
n = 1 = log1/5 1
1953125
n – 1 = 9
n = 10
equating
same base / use of log
answer (3)
3.2
S∞ = 27 = a
1 - r
S3 = a(1 - r3) = 26
1 - r
27(1 - r3) = 26
27
1 - r3 = 26/27
r3 = 1
27
r = 1/3
OR
S∞ = 27 = a
1 - r
a = 27(1 - r)
But a + ar + ar2 = 26
a(1+ r + r2 ) = 26
27(1- r)(1+ r + r2) = 26
(1 - r)(1 + r + r2) = 26/27
r2 + r + 1 - r3 - r2 - r = 26/27
- r3 + 1 = 26/27
r3 = 1/27
r = 1/3
S∞ = 27 = a
1 - r
S3 = a(1 - r3) = 26
1 - r
substitution
r = 1/3
(4)
OR
a = 27(1 - r)
a + ar + ar2 = 26
substitution
r = 1/3
[9]
QUESTION 4
4.1
x + 1 = -x - 7
2x = - 8
x = -4
y = -3
f (x) = -2 - 3
x + 4
p = 4 and q = -3
OR
p + q = 1 ……(1)
–p + q = –7
q = p – 7 …….(2)
subs. (2) into (1)
p + p – 7 = 1
2p = 8
p = 4
q = –3
p + q = 1
-q = p – 7
substitution
simplification
4.2
y = -2 - 3
x + 4
0 = -2 - 3
x + 4
-2 - 3(x + 4) = 0
-3x -14 = 0
x = - 14
3
y = 0
x = - 14
3
(2)
4.3
horizontal asymptote
vertical asymptote
y intercept
shape
(4)
[10]
QUESTION 5
5.1
-2x2 + 4x + 16 = 0
x2 - 2x - 8 = 0
(x - 4)(x + 2) = 0
x = 4 or x = - 2
A(-2 ;0) and B(4;0) (3)
factors
x = – 2
x = 4
5.2
f (x) = -2x2 + 4x + 16
- b = - -4 = 1
2a -2(2)
f (1) = -2(1)2 + 4(1) + 16 = 18
C(1;18)
OR
f (x) = -2x2 + 4x +16
f/(x) = -4x + 4
-4x + 4 = 0
x = 1
f (1)= -2(1)2 + 4(1) + 16 = 18
C(1;18) (2)
5.3 y ≤ 18
(1)
OR
y∈(-∞;18]
(1)
5.4 TP (1 ; 18) for f
TP (2 ; 15) for h
p = -1
q = -3
TP for h at (2 ; 15)
p = -1
q = -3
(3)
5.5
y = 2x + 4
x = 2y + 4
y = ½x - 2
swop x and y
y = ½x - 2
(2)
5.6
g(x) = 0 or g-1(x) = 0
x = 4 or x = –2 (product 0 at x-intercepts)
x = 4
x = –2
(2)
5.7
-2x2 + 4x + 16 + k = 2x + 4
-2x2 + 2x + 12 + k = 0
b2 - 4ac < 0
(2)2 - 4(-2)(12 + k) < 0
4 + 8(12 + k) < 0
100 + 8k < 0
k < -12,5
OR
g/ (x) = 2
f/(x) = -4x + 4 = 2
x = ½
f(½) = 17,5
g(½) = 5
k < -12,5
equating
standard form
b2 - 4ac < 0
substitution
answer
(5)
OR
g/ (x) = 2
f/(x) = -4x + 4
f(½) = 17,5
g(½) = 5
(5)
[18]
QUESTION 6
6.1.1
y = 3x
x = 3y
y = log3 x
swop x and
equation
(2)
6.1.2
h(x) = 3x-4 + 2
Transformation: 4 units left, 2 units down
P/ (2;9)
x = 2 (A)
y = 9 (A)
(2)
6.2
f (x) = 2x + p + q
q = -16
16 = 2p + 3 - 16
2p + 3 = 32
2p + 3 = 25
p + 3 = 5
p = 2
q = -16
substitute (3 ; 16)
2p + 3 = 25 or p + 3 = log232
p = 2
(4)
[8]
QUESTION 7
7.1
substitution into correct formula
n = 16
simplification
answer (A)
(4)
7.2.1
0,075
12
substitution into correct Formula
answer
(3)
7.2.2
60 x 9000 = R540 000
A = P(1 + i)n
652743,95(1 +0.075)n = 190 214,14 + 540000
12
730 214,14 = 652 743, 95(1 +0.075)n
12
1,1186. = (1, 00625)n
n = log1,00625 (1,1186)
n = 18 months
60 x 9000 = R540 000
equation
simplification
use of logs18 months (6)
OR
Interest over 5 years = 652 743,95 – 9 000 × 60
= 112 743,95
interest on n years
= 190 214,14 – 112 743, 95 = 77 470,19
652 743,95 + 77 470,19 = 652743,95(1 +0.075)n
12
1,1186.... = (1, 00625)n
n = log1,00625 (1,1186)
n = 18 months
OR
60 × 9 000
answer
equating
simplification
use of logs
18 months
(6)
[13]
QUESTION 8
8.1
f(x) = 3x2
f / (x) = lim f (x + h) - f (x)
h→0 h
f / (x) = lim f 3(x + h)2 - 3x2
h→0 h
f / (x) = lim f 3x2 + 6xh + 3h2 - 3x2
h→0 h
lim 6xh + 3h2
h→0 h
lim h(6x + 3h)
h→0 h
= 6x
substitution
expansion
simplification
lim h(6x + 3h)
h→0 h
= 6x
(5)
8.2.1
f (x) = x2 - 3 + 9x-2
f/ (x) = 2x - 18x-3
(3)
8.2.2
g(x) = (√x + 3)(√x -1)
g(x) = x + 2x½ -3
g/ (x) = 1 + x-½
(4)
[12]
QUESTION 9
9.1
f/ (x) = 6x2 + 6x -12
6x2 + 6x -12 = 0
x2 + x - 2 = 0
(x + 2)(x - 1) = 0
x = -2 or x = 1
y = 20 or y = – 7
A(–2 ; 20) and B(1 ; –7) x
(5)
9.2
f// (x)= 12x + 6
12x + 6 > 0
12x > -6
x > -½
OR
x =-2 + 1 = -½
2
(3)
9.3
f/ (2) = 24
Equation of the tangent:
y - 4 = 24(x - 2)
y = 24x - 44
(3)
[11]
QUESTION 10
10.1
x = –1 and x = 2
TP at x = –1
TP at x = 1
shape
(4)
10.2.1
Area of segment = ¼ Area of big circle
= ¼ π (x - x2 )2
Area triangle ABO counted
= Area Δ = ½ (x - x2)2
Area of shaded region
= ¼ π(x - x2 )2 – ½ (x - x2 )2
= π - 2 (x - x2 )2
4
=(π - 2)(x2 - 2x3 + x4)
4
(5)
10.2.2
Area of shaded region
= (π - 2)(x4 - 2x3 + x2)
4
dA =(π - 2)(4x3 - 6x2 + 2x)
dx 4
4x3 - 6x2 + 2x = 0
x(2x2 - 3x + 1) = 0
x(2x - 1)(x - 1) = 0
x ≠ 0 or x = ½ or x ≠ 1
[13]
QUESTION 11
11.1 P(A) = 1 – P(not A) = 0,6
P(A and B) = P(A) × P(B)
= 0,6 × 0,3
= 9
50
= 0,18
(3)
11.2.1
a = 15 = 0,1
150
11.2.2 m = 1 - 0,7 = 0,3 (1)
11.2.3 0,24 + 0,14 + 0,02 + 0,12 + 0,1 + 2b = 0,7
2b = 0,08
b = 0,04
0,04 x 150 = 6
11.3.1 9 × 9 × 8 = 648 (2)
11.3.2 2 × 8 × 4 = 64
2 × 8 × 5 = 80
Total number = 64 + 80 = 144 (4)
[15]
TOTAL: 150