NOTE:

  • If a candidate answers a question TWICE, mark the FIRST attempt
  • Consistent accuracy applies in ALL aspects of the marking
  • If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out
  • The mark for substitution is awarded for substitution into the correct

MEMORNDUM 

QUESTION 1 

1.1.1

x2 + 2x -15 = 0
(x - 3)(x + 5) = 0
∴ x = 3         or / of          x = -5

OR

1.1.1 atfdtadafd

🗸 factors 
🗸 x = 3       🗸 x = -5   (3)

OR 

🗸 substitution 
🗸 x = 3      🗸 x = -5   (3)

1.1.2

1.1.2 auygdya

Penalise 1 mark for incorrect rounding

🗸 substitution 

🗸 x = 0, 43 🗸 x = -0, 77

(3)

1.1.3

x(x - 3) ≥ -2
x2 - 3x + 2 ≥ 0
(x -1)(x - 2) ≥ 0
∴  x ≤ 1     or  x ≥  2

1.1.3 auyygtdad

🗸 standard form

🗸 factorisation

🗸 x ≤ 1  or/of 🗸 x ≥  2  (4)

1.1.4

1.1.4 augdyua
43 - x = x2 - 2x +1
x2 - x - 42 = 0
(x - 7)(x + 6) = 0
∴ x = 7     or      x # - 6

🗸 isolating the surd

🗸 squaring both sides

🗸 standard form 

 🗸 factorisation 

🗸 selection  (5)

1.2

2y - x = 3                   (1)
y2 + 3x = 2xy             (2)

x = 2y - 3                   (3)
Substitute(3)into(2) 
y2 + 3(2 y - 3) = 2 y(2 y - 3)
y2 + 6 y - 9 - 4y2 + 6 y = 0
-3y2 +12 y - 9 = 0
y2 - 4 y + 3 = 0
( y - 3)( y -1) = 0

∴ y = 3 or y = 1
x = 2(3) - 3    or    x = 2(1) - 3
= 3                          = -1 

OR
2y - x = 3                  (1)
y2 + 3x = 2xy            (2)
y = x +                   (3)
     2     2
Substitute (3) into (2) 
1.2 aiuhdaui

🗸 x = 2y - 3

🗸 substitution 

🗸 standard form

🗸 factorisation 

🗸 y-values 

 

 

 

 

 

OR 

🗸 y = x +     
     2     2

 🗸 substitution

🗸 standard form  

🗸 factorisation 

🗸 x-values  

🗸 y-values    (5)

 

1.3

1.3 auda

For non-real roots:
Δ < 0 
p(6 - p) - 9 < 0
- p2 + 6p - 9 < 0
p2 - 6p + 9 > 0
(p - 3)2 > 0
∴ p∈  but    p # 3

1.3 b adgha

OR

1.3 auda
For non-real roots:
Δ< 0
p(6 - p) - 9 < 0 
- p2 + 6p - 9 < 0
(3 - p)( p - 3) < 0
∴ p∈   but p # 3

1.3 last ghvahda

🗸 Δ< 0

🗸 standard form  

🗸 factorisation  

🗸 answer  

 

 

 

OR

 

🗸 Δ< 0

🗸 standard form 

🗸 factorisation 

🗸 answer (4)

    [24]

QUESTION 2

2.1.1 

2.1.1 aygdyaud

🗸 8  (1) 
2.1.2

2a = 4
∴ a = 2
3a + b = 4
3(2) + b = 0
∴  b = - 6
a + b + c = -16
2 - 6 + c = -16
∴  c = -12
Tn = 2n2 - 6n -12

🗸 a = 2

🗸 b = -6

🗸 c = -12

🗸 Tn = 2n2 - 6n -12 (4)

2.1.3

T38 = 2(38)2 - 6(38) -12
= 2648

🗸 substitution 

🗸 answer  (2)

     

2.1.4

General term for first differences:
Tn = 4n - 4
400 = 4n - 4
∴ n = 101

Tn(linear) = (Tn+1 - Tn )(quadratic)
∴ n = 101 and  n +1 = 102
The termsare :101 and  102

OR

2(n +1)2 - 6(n +1) -12 - (2n2 - 6n -12) = 400
2n2 + 4n + 2 - 6n - 6 -12 - 2n2 + 6n +12 = 400
4n - 4 = 400
4n = 404
∴  n = 101
∴ Between  T101 and  T102

OR

Trialand error 
T102 = 2(102)2 - 6(102) -12 = 20184
T101 = 2(101)2 - 6(101) -12 = 19784
Difference: 400
∴ BetweenT101 and T102

🗸 Tn = 4n - 4

🗸 Tn = 400

🗸 answer 

OR 

🗸 4n - 4 = 400 🗸

🗸 answer 

OR 

🗸subst. for T101 and T102

🗸 400

🗸 answer   (3)

2.2.1

Tn = a + (n -1)d
89 = 2 + (n -1)(3)
3n -1 = 89
3n = 90
n = 30

🗸 substitution  

🗸 answer   (2)

2.2.2 2.2.2 auygdyuagd

🗸 Sum formula 

🗸 substitution  

🗸 answer  

OR  

🗸 Sum formula  

🗸 substitution  

🗸 answer   (3)

    [15]

QUESTION 3 

3.1

T9 = ar8 = 768
T13 = ar12 = 12 288
ar1212 288
ar8        768
∴  r4 = 16
r =± 2 
a =   768  
       (±2)8
= 3

🗸ar1212 288
   ar8        768 

🗸 r =± 2 

🗸 value of a 

(3)

3.2.1

S2 = 5424
        19   19
30
   19

🗸 answer 

(1)

3.2.2

T1 + T2 = 30
               19
a + ar = 30
             19
a(1+ r) = 30
               19
a =      30         
        19(1+ r)

🗸 a + ar = 30
                 19
(1)

3.2.3

S  =    a   54
          1- r      19
∴ a = 54(1- r)
           19
a =      30       ................. from (3.2.2)
      19(1+ r)
      30     54(1- r)
    19(1+ r)       19
(1- r)(1+ r) = 30 
                     54
1- r2 = 5/9
r24/9
∴ r = 2/3

🗸 a = 54(1- r)
           19 

🗸 equating

 🗸r24/9

 🗸 answer 

(4)

   

[9]

QUESTION 4

4 AHDUAID

4.1

D(0 ; 1)

🗸 (0 ; 1)

(1)

4.2

x = -2 ; y = -1

🗸 x = -2 🗸 y = -1

(2)

4.3

𝑥  ∈ R   but 𝑥  # −2

🗸 𝑥  ∈ R   🗸𝑥  # −2

(2)

4.4

g(x) = bx
8 = b-3
8 = 1
       b3
b3 = 1
        8
∴ b =
         2

🗸 substitution

🗸 answer 

(2)

4.5

y =      -3       -1
         x + 2
0 =     -3     -1
       x + 2
1 =    -3    
       x + 2
x + 2 = -3
x = -5
∴ A(-5; 0) 

y =   -3    -1
     0 + 2
=- 5
    2
∴ C (0; - 5/2 )

🗸 substitution y = 0  

🗸 x = -5

🗸 y =- 5
           2

(3)

4.6

4.6 yugdyaud
∴  y = log ½ x

OR 

y = 2-x
∴ x = 2- y
y = -log2 x

🗸 4.6 yugdyaud
🗸 y = log ½ x

OR 

🗸 x = 2- y

🗸 y = -log2 x

(2)

 

 

(2)

4.7      
4.7.1 -5 < x < -2      OR    x ∈(-5 ; - 2) 🗸🗸 answer  (A)    (2)
4.7.2 0 < x ≤ 1/     OR    x ∈(0 ; 1/] 🗸🗸 answer  (A) (2)
      [16]

QUESTION 5

5 AJUGDUYA
5.1

-x2 - 2x + 8 = 0
x2 + 2x - 8 = 0
(x + 4)(x - 2) = 0
∴ x = -4 or  x = 2
∴ R(-4; 0) and  S(2 ; 0)
∴ RS = 6 units 

🗸 f (x) = 0
🗸 factorisation 
🗸 values of x 
🗸 answer 

(4)

5.2

5.2 aigdyad

🗸 method 

🗸 x = -1 

🗸 y = 9 

OR 

🗸 - b
     2a

🗸 x = -1

🗸 y = 9 

OR 

🗸 -2x - 2 = 0 

🗸 x = -1 🗸 y = 9

(3)

5.3.1

f (x) = -x2 - 2x + 8
f '(x) = -2x - 2
∴ -2x - 2 = 2
∴ x = -2
∴  y = - (-2)2 - 2(-2) + 8
= 8
∴ W (-2;8)

🗸 f / (x)

🗸 f / (x) = 2 

🗸 x = -2 

🗸 y = 8

(4)

5.3.2

g(x) = mx + c
m = - ½  (⊥ lines ) 
c = 8
 y = - ½ x + 8

🗸 gradient  

🗸 equation 

(2)

5.4

f (x) = -x2 - 2x + 8
h(x) = - f (x -1)
= - [-(x -1)2 - 2(x -1) + 8]
= - [-(x2 - 2x +1) - 2x + 2 + 8]
= - [-x2 + 2x -1- 2x + 2 + 8]
= x2 - 9

OR

h(x) = (x + 3)(x - 3)
= x2 - 9 

OR

New turning point  = (0 ; –9)
y = x2 - 9

🗸 - f (x -1)
🗸 substitution 
🗸 simplifying 
🗸 equation  

OR 

🗸🗸 roots 3 and –3
🗸 +( x + 3)(x – 3)
🗸 equation 

OR 

🗸 (0 ; 🗸🗸–9)
🗸 equation 

(4)
      17]

QUESTION 6

6.1 6.1 aihda

🗸 subst. into correct formula
🗸 simplification
🗸 answer (3)

6.2

6.2 dugaudyga

🗸 n = 144

🗸 subst. into correct formula 

🗸 adding final month’s interest

🗸 answer  

OR 

🗸 n = 144

🗸 subst. into correct formula

🗸 adding final month’s interest

🗸 answer    (4)

6.3.1

6.3 ahduiahdu

🗸 i = 0, 093 and n = 72
          12

🗸 substitution into correct formula

🗸 answer   (3)

6.3.2 6.3.2 aiygdaghd

🗸 i = 0,093 and/en n = 32
           12
🗸 subst. into correct formula
🗸 P = 179 667, 32

OR

🗸 i = 0,093 and/en n = 40
           12
🗸 subst. Into correct formula

🗸 P = 179 667, 32      (3)

6.3.3 6.3.3 agidyad

🗸 subst. into correct formula 

🗸 correct use of logs

🗸 = 28,73 

🗸 n = 29 months  

OR  

🗸 subst. into correct formula 

🗸 correct use of logs 

🗸 = 28,73

🗸 n = 29 months   (4)

    [17]

QUESTION 7

7.1

7.1 aiuygda

🗸 substitution  

🗸 expansion  

🗸 simplification  

🗸 notation and lim (-4x - 2h)
h -> 0

🗸 answer        (5)

7.2.1

7.2.1 aiughdiuad

🗸 2x½ 

🗸 28x3 🗸 3x½              (3)

7.2.2

7.2.2 sigyuada

🗸 3x - 7         🗸 -6x-1
🗸 3 and differentiating constant
🗸 +6x-2     (4)

   

[12]

QUESTION 8

8.1.1

f (x) = 2(x - x1 )(x - x2 )(x - x3)
= 2 ( x +1)( x - ½)( x - 3)
= ( x +1)(2x -1)( x - 3)
= ( x +1)(2x2 - 7x + 3)
= 2x3 - 7x2 + 3x + 2x2 - 7x + 3
= 2x3 - 5x2 - 4x + 3
f (x) = 2x3 + bx2 + cx + d
∴ b = -5, c = - 4 , d = 3

🗸🗸 f (x) = 2( x +1)( x - ½ )( x - 3) 

OR

🗸🗸 f (x) = ( x +1)(2x -1)( x - 3)
🗸 exapnsion 
🗸 simplifying  (4)

8.1.2

f '(x) = 6x2 -10x - 4
0 = 6x2 -10x - 4
∴ 3x2 - 5x - 2 = 0
(3x +1)( x - 2) = 0
∴ x = - 1/3   or  x = 2
∴ N is at f (2)
f (2) = 2 (2)3  - 5(2)2  - 4 (2) + 3
= -9
∴ N (2 ; - 9)

🗸 f '( x) = 6x2 -10x - 4 = 0
🗸 factorisation 
🗸 chosing : x = 2
🗸 y = -9

(4)

8.1.3 (a)

1/3 < x < 2

🗸🗸 answer 

(2)

8.1.3 (b)

 

8.1.3 aiuhduyad

🗸 f ''(x) =12x -10
🗸 f ''(x) < 0
🗸 answer 

OR

🗸 x = 5/6

8.1.3 iuyd8ad

(3)
8.2 8.2 aiuhduiasd

🗸 f (0) = 0
🗸 (m ; 0)
🗸 shape 

(3)
   

[16]

QUESTION 9

9.1

A = (½ ×15x × 8x × 2) + (15xy) + (8xy) + (17xy)
5760 = 120x2 + 40xy
∴y = 5760 -120x2
            40x

🗸 total surface area
🗸 5760 = 120x2 + 40xy

(2)

9.2

V = (½b.h) × H
V = ½ × 15x × 8x × y
= ½ × 15x  × 8x ×  5760 -120x2
                                  40x
= 60x (144 - 3x2)
= 8640x -180x3

🗸 substitution into V
🗸 substituing for y
(2)

9.3

V '(x) = 8640 - 540x2
V '(x) = 0
∴ 8640 - 540x2 = 0
8640 = 540x2
x2 = 16
∴ x = 4

🗸 V '(x) = 8640 - 540x2
🗸 V '(x) = 0
🗸 simplification
🗸 answer

(4)

   

[8]

QUESTION 10

10.1.1

P(B) = 1- P(not)
= 1- 0, 45
= 0, 55

🗸 0,55  (1)

10.1.2

P(A and/en B) = P(A)×P(B)
= 0, 2 × 0, 55
= 0,11

P(A or B) = P(A) + P(B) - P(A and B)
= 0, 2 + 0, 55 - 0,11
= 0, 64    or   16/25

🗸 P(A)×P(B)
🗸 substitution 
🗸 answer         (3)

10.2

10.2 auygydad

P(late) = 1/2 x + 3/5(1- x)
1/2 x + 3/5 (1- x) = 8/15
15x +18(1- x) = 16
15x +18 -18x = 16
- 3x = -2
x = 2/3

 

 

 

 

 

 

 

 

 

 

 

 🗸 1/2 x + 3/5(1- x)

🗸 equating 

🗸 substitution 

🗸 answer  (4)

   

[8]

QUESTION 11

11.1  11.1 a auygyuda  11.1 b auygda
11.2 11.2 a auyygduya 11.2 b uaygyugdad
     [8]

TOTAL: 150

Last modified on Thursday, 17 March 2022 06:47