PHYSICAL SCIENCES: PHYSICS PAPER 1
GRADE 12
SENIOR CERTIFICATE EXAMINATION
MEMORANDUM
MAY/JUNE 2017

QUESTION 1
1.1 D ✓✓ (2)
1.2 B ✓✓ (2)
1.3 D ✓✓ (2)
1.4 C✓✓(2)
1.5 D ✓✓ (2)
1.6 B ✓✓ (2)
1.7 C ✓✓(2)
1.8 C ✓✓ (2)
1.9 B ✓✓ (2)
1.10B ✓✓ (2)
[20]

QUESTION 2
2.1.1

2.11

Accepted labels   
 w Fg/Fw/weight/mg/gravitational force   ✓
 f Friction/Ff/fk/3 N/Fw   ✓
 N Normal (force)/FnormaL/FN   ✓
 F FA/Fapplied   ✓

Notes

  • Mark awarded for label and arrow
  • Deduct 1 mark if arrow(s) is (are) missing
  • Do not penalise for length of arrows since drawing is not to scale.
  • Any other additional force(s) Max :¾
  • If force(s) do not make contact with body/Indien krag(te) nie met die voorwerp kontak maak nie: Max/Maks: ¾

(4)

2.1.2 fk = μkN ✓ (can use FN for N in equation)
3 = (0,2)N ✓
N = 15 N ✓
(3)
2.1.3 POSITIVE MARKING FROM QUESTION 2.1.2
Fnet = ma
N + Fvert - w = 0
N + Fvert = w
Any of the three
Fsin20o ✓= (2)(9,8) – 15 ✓
F = 13,45 N✓
(4)
2.1.4 POSITIVE MARKING FROM QUESTION 2.1.3
Fnet = ma
Fcos 20o – f = ma
Any two
13,45cos20o – 3 = 2a✓
a = 4,82 m.s-2 ✓
(3)
2.2
2.2.1 Any two particles (objects) in the universe will attract each other with a force which is directly proportional to the product of the masses ✓and inversely proportional to the square of the distance between them (their centres). ✓ (2)
2.2.2 Increases✓
Gravitational force is inversely proportional to the square of the distance between the (centres of the) objects✓
OR
F=α
        r2✓
(2)
[18]

QUESTION 3
3.1 The only force acting on the ball is the gravitational force. ✓✓
OR
The only force acting on the ball is its weight.
ACCEPT
The only force acting on the ball is gravity. (2)
3.2.1

OPTION 1
UPWARDS AS POSITIVE
Δy = viΔt + ½aΔt2✓
= (10)(3) + ½(-9,8)(32) ✓
= -14,10
Height of building = 14,10 m✓
DOWNWARDS AS POSITIVE
Δy = viΔt + ½ aΔt2✓
= (-10)(3) + ½ (9,8)(32) ✓
= 14,10 m ✓
Height of building = 14,10 m 
OPTION 2
UPWARD AS POSITIVE
For maximum height 
vf = vi + aΔt
0 = 10 + (-9,8)Δt
Δt = 1,02 s
Time taken from point A to ground
= 3 - 2(1,02) = 0,96 s
Δy = viΔt + ½ aΔt2
= (-10)(0,96) + ½ (- 9,8)(0,962)✓
= -14,1184
Height of building = 14,12 m✓
UPWARD AS NEGATIVE
For maximum height
vf = vi + aΔt
0 = -10 + (9,8)Δt
Δt = 1,02 s
Time taken from point A to ground
= 3 - 2(1,02) = 0,96 s
Δy = viΔt + ½ aΔt2✓
= (10)(0,96) + ½ ( 9,8)(0,962) ✓
= 14,1184 m ✓
Height of building = 14,12 m
OPTION 3
UPWARD AS POSITIVE
vf = vi + aΔt
= 10 + (-9,8)(3)
= -19,40
vf 2 = vi 2 + 2 aΔy✓
(-19,4)2 = (10)2 + 2(-9,8)Δy✓
Δy =-14,10 m
Height of building = 14,10 m✓ 
UPWARD AS NEGATIVE
vf = vi + aΔt
= -10 + (9,8)(3)
= 19,40
vf 2 = vi 2 + 2 aΔy✓
(19,4)2 = (-10)2 + 2(9,8)Δy
Δy = 14,10 m ✓
Height of building = 14,10 m
OPTION 4
UPWARD AS POSITIVE
vf = vi + aΔt
= (-10) + (-9,8)(0,96)
= -19,408
vf 2 = vi 2 + 2 aΔy
(-19,408)2 = (10)2 + 2(-9,8)Δy
Δy =14,12 m
Height of building = 14,12 m 
UPWARD AS NEGATIVE
vf = vi + aΔt
= 10 + (9,8)(0,96)
= 19,408
vf 2 = vi 2 + 2 aΔy
(19,408)2 = (-10)2 + 2(9,8)Δy
Δy = 14,12 m 
Height of building = 14,12 m
OPTION 5
Wnet = ΔEk = ΔK
mgΔxcos0o = ½ m(vf2 – vi2)
(9,8)Δx = ½ (19,4082 – 102) ✓
Δx = 14,12 m
Height of building = 14,12 m✓
vf = vi + aΔt
= 10 + (9,8)(3)
= 19,40
OPTION 6
EmechA = EmechB
(Ek + Ep)A = (Ek + Ep)B
½ mv2 + mgh = ½ mv2 + 0
½(10)2 + (9,8)h = ½(19,40)2 ✓
Height of building = 14,12 m✓
vf = vi + aΔt
= 10 + (9,8)(3)
= 19,40
OPTION 7
Wnc = ΔEp + ΔEk✓
0 = mg(hf – hi) + ½m(vf2 - vi2)
0 = m(9,8)(0 – hi) + ½m(19,4082 – 102) ✓
Height of building = 14,12 m✓
vf = vi + aΔt
= 10 + (9,8)(3)
= 19,40
OPTION 8
UPWARD AS POSITIVE
vf = vi + aΔt
= (10) + (-9,8)(3)
= -19,40 m∙s-1
Δy=v1 + vf Δt ✓
          2
Δy = (10 -19,40) 3✓
                2
Height of building = 14,12 m✓
UPWARD AS NEGATIVE
vf = vi + aΔt
= 10 + (9,8)(3)
= 19,40 m∙s-1
Δy=v1 + vf Δt✓
          2
Δy = (10 -19,40) 3✓
                2
Δy = 14,12 m✓
Height of building = 14,12 m

(3)
3.2.2

OPTION 1
UPWARDS AS POSITIVE
vf = vi + aΔt✓
= (10) + (-9,8)(3) ✓
= -19,40 m∙s-1
Speed = 19,40 m∙s-1✓
Spoed = 19,40 m∙s-1 
DOWNWARDS AS POSITIVE
vf = vi + aΔt✓
= (-10) + (9,8)(3) ✓
= 19,40 m∙s-1 ✓
Speed = 19,40 m∙s-1
Spoed = 19,40 m∙s-1 
OPTION 2
UPWARDS AS POSITIVE
vf2 = vi2 + 2aΔx ✓
= (-10)2 + 2(-9,8)(-14,1)
vf = 19,4 m∙s-1 ✓
DOWNWARDS AS POSITIVE
vf2 = vi2 + 2aΔx ✓
= (10)2 + 2(9,8)(14,1) ✓
vf = 19,4 m∙s-1 ✓

POSITIVE MARKING FROM QUESTION 3.2.1

OPTION 3 
UPWARDS AS POSITIVE
tΔ2v+v=yΔfi✓
Δy=v1 + vf Δt
          2
-14.12 = (10 + vf 3
                    2
Speed = 19,41 m∙s-1✓
Spoed = 19,41 m∙s-1 
DOWNWARDS AS POSITIVE
Δy=v1 + vf Δt
          2
-14.12 = (10 + vf 3
                    2
vf = 19,41 m∙s-1
Speed = 19,41 m∙s-1
Spoed = 19,41 m∙s-1 

(3)
3.2.3

OPTION 1
UPWARDS AS POSITIVE
vf2= vi2 + 2aΔy✓
0 = vi2+ (2)(-9,8)(8) ✓
vi = 12,52 m∙s-1✓
Speed = 12,52 m∙s-1
 
DOWNWARDS AS POSITIVE
vf2= vi2 + 2aΔy✓
0 = vi2+ (2)(9,8)(-8)
vi = -12,52 m∙s-1✓
Speed = 12,52 m∙s-1 ✓
 
OPTION 2
UPWARDS AS POSITIVE
Δx = viΔt + ½aΔt2
-8 = 0 + ½ (-9,8)Δt2
Δt = 1,28 s
vf = vi + aΔt ✓
0 = vi + (-9,8)(1,28)✓
vi = 12,52 m∙s-1✓
Speed = 12,52 m∙s-1

DOWNWARDS AS POSITIVE
Δx = viΔt + ½aΔt2
8 = 0 + ½ (9,8)Δt2
Δt = 1,28 s
vf = vi + aΔt ✓
0 = vi + (9,8)(1,28)✓
vi = -12,52 m∙s-1
Speed = 12,52 m∙s-1 ✓

(3)
3.3 UPWARDS AS POSITIVE

3.3

CHECKLIST FOR MARKING   
Each line correctly drawn with calculated velocities. 1 x 2  ✓✓ 
Mark for lines being parallel   ✓
Times 3 s and 3,2 s correctly shown   ✓


3.3 DOWNWARDS AS POSITIVE(4)

3.3b

CHECKLIST FOR MARKING   
Each line correctly drawn with calculated velocities. 1 x 2  ✓✓ 
Mark for lines being parallel   ✓
Times 3 s and 3,2 s correctly shown   ✓

[15]

QUESTION 4
4.1

OPTION 1
v=Δx
    Δt
= 0,2 
   0,4
= 0,5 m∙s-1 
OPTION 2
v=Δx
    Δt
= 0,4
   0,8
= 0,5 m∙s-1 
OPTION 3
v=Δx
    Δt
= 0,6
   1,2
= 0,5 m∙s-1 

 

Formula/Formule

Correct substitution in all three equations

Correct answer

  • If only two calculations used with correct answer, award 2/3
  • If unit(s) omitted lose 1 mark.

OPTION 2
Trolley moves with equal displacements in equal time (intervals). (Full marks or zero)(3)
4.2 The total linear momentum of a closed (isolated) system remains constant (is conserved).
OR
In an isolated system, the total linear momentum before collision is equal to the total linear momentum after collision (2)
NOTE:
If the words “closed (isolated)” or “total” omitted, award 1/2.
4.3 POSITIVE MARKING FROM QUESTION 4.1

OPTION 1
Σpi = Σpf
m1v1i + m2v2i = m1v1f + m2v2f (any one)
(3,5)(0,5)✓ = (3,5 + 6)vf ✓
vf = v6kg
= 0,184 m∙s-1

Fnet = (vf - v1)(6) (0.184-0)
                Δt                 0.05
=2.21N
For trolley B:
FnetΔt = Δp = mΔv✓
Fnet(0,5) = 6(0,184 -0) ✓
Fnet = 2,21 N (2,24 N)✓ 

OPTION 2
Σpi = Σpf
m1v1i + m2v2i = m1v1f + m2v2f (any one)
(3,5)(0,5) ✓ = (3,5 + 6)vf ✓
vf = v6kg
= 0,184 m∙s-1 
For trolley B:
FnetΔt = Δp = mΔv✓
Fnet(0,5) = 6(0,184 -0) ✓
Fnet = 2,21 N (2,24 N) ✓ 
For trolley A:
FnetΔt = Δp = mΔv✓
Fnet(0,5) = 3,5(0,184 -0,5) ✓
Fnet = - 2,21 N (2,24 N)
∴ Magnitude of the average net force experienced by trolley B = 2,21 N (2,24 N)✓ 
(6)
[11]
OPTION 3
Σpi = Σpf
m1v1i + m2v2i = m1v1f + m2v2f (any one)
(3,5)(0,5) ✓ = (3,5 + 6)vf ✓
vf = v6kg
= 0,184 m∙s-1 
For trolley B:
vf = vi + aΔt
0,184 = 0 +a(0,5)
a = 0,368 ms-1
Fnet = ma✓
= (6)(0,368)
= 2,21 N
For trolley A:
vf = vi + aΔt
0,184 = 0,5 +a(0,5)
a = - 0,632 ms-1
Fnet = ma✓
= (3,5)(-0,632)
= - 2,21 N
∴ Magnitude of the average net force experienced by trolley B = 2,21 N (2,24 N)✓
(6)
[11]


QUESTION 5
5.1

5.1

Related Items

Accepted labels   
 w Fg/Fw/weight/mg/gravitational force   ✓
 f Friction/Ff/50 N/wrywing/Fw   ✓
 N Normal force/FNORMAL/FNOR/F NORMAAL   ✓

Notes

  • Mark awarded for label and arrow
  • Deduct 1 mark if arrow(s) is (are) missing
  • Do not penalise for length of arrows since drawing is not to scale.Any other additional force(s)Max 2
  • If force(s) do not make contact with body:Max: ¾
  • Award 1 mark if both resolved components of w are correct.

5.2 The net/total work done on an object equals the change in the object's kinetic energy. ✓✓
OR
The work done by the net force equals the change in the object's kinetic energy. ✓✓(2)
5.3

OPTION 1
Wnet = ΔEK
fΔxcosθ + FgΔxcosθ = ½mvf2 – ½mvi2
(50)(25cos180o)✓ + (60)(9,8) (25cos70o) ✓ = ½(60)(152 – vi2) ✓
-1 250 + 5 027,696 = 6 750 – 30vi2
vi = 9,95(4) m.s-1✓
OPTION 2
Wnet = ΔEK
fΔxcosθ + Fg||Δxcosθ = ½mvf2 – ½mvi2
(50)(25cos180o ) ✓+ (60)(9,8sin20o)(25cos0o) ✓ = ½(60)(152 – vi2) ✓
-1 250 + 5 027,696 = 6 750 – 30vi2
vi = 9,95(4) m.s-1✓
OPTION 3
Wnc = Δ EK + Δ EP
fΔxcosθ = ½(mvf2 - mvi2) + (mghQ – mghP)
EmechP + EmechQ + Wnc = 0
(50)(25cos180o) ✓= ½(60)(152 – vi2) ✓ + (60)(9,8)(-25sin 20o) ✓
-1 250 = 6 750 – 30 vi2 – 5 027,696
vi = 9,95 m.s-1✓ 
OPTION 4
Fnet = 201,11 – 50
= 151,11 N
Wnet = ΔEk ✓
FnetΔxcosθ = ½(mvf2 - mvi2)
(151,11)(25)cos0o✓ = ½ (152 – vi2)✓
vi = 9,95 m∙s-1 ✓ 

(5)
5.4 POSITIVE MARKING FROM QUESTION 5.3

OPTION 1
Pave = Fvave
= 50✓(9.95 + 15)
                 2
= 623,75 W ✓
OPTION 2
5.4
NOTE:

Candidates can substitute -1 250 from QUESTION 5.3 directly into the equation  

(4)
[14]

QUESTION 6
6.1
6.1.1 It is the change in frequency (or pitch)✓ of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium ✓of sound propagation.
OR
An apparent change in frequency (pitch), (wavelength) ✓as a result of the relative motion between a source and an observer ✓(listener). (2)
6.1.2 6.12(5)
6.2 According to the Doppler Effect if the star moves away ✓from the observer a lower frequency/longer wavelength ✓is detected. This lower frequency/ longer wavelength corresponds to the red end of the spectrum✓ (3)
[10]

QUESTION 7
7.1 The magnitude of the electrostatic force exerted by one point charge (Q1) on another point charge (Q2) is directly proportional to the product of the (magnitudes of the) charges✓ and inversely proportional to the square of the distance (r) between them. ✓ (2)
7.2.1 Negative✓✓ (2)
7.2.2 

7.22
Q2 = 1,73 x10-5 C ✓
Do not penalise for the nature of the charges.
(7)
[11]

QUESTION 8
8.1 Electric field is a region of space in which an electric charge experiences a force. ✓✓ (2)
8.2

8.2

Criteria for sketch  Marks 
Correct shape as shown.   ✓
Direction away from positive   ✓
Field lines start on spheres and do not cross for correct diagram.   ✓

(3)
8.3 EPA = kQ
                 r2
(9 x 109)(5 x 10-6)✓
           (1.25)2
= 2,88 x 104 N∙C-1 to the right✓
EPB = = kQ
              r2
(9 x 109)(5 x 10-6)✓
           (1.25)2
= 8,00 x 104 N∙C-1 to the left✓
Enet = EPA + EPB
= 2,88 x 104 + (-8,00 x 104)
= 5,12 x 104 N∙C-1 ✓ Vector addition
(5)
[10]

QUESTION 9
9.1.1 The potential difference across a conductor is directly proportional to the current in the conductor at constant temperature ✓✓
NOTE
If constant temperature is omitted -1 mark (2)
9.1.2

9.12

Straight line passing through 4 or five points✓
Straight line with intercepts on both axes✓. (2)
9.1.3 5,5 V (accept any value from 5,4 V to/tot 5,6 V based on graph drawn.)
NOTE  :
The value must be the y-intercept.(1)
9.1.4

Slope = ΔV or y2 - y1
             ΔI       y2 - y1
= 5.5 - 0 = - 1,2
    0-4.6
Internal resistance (r) = 1,2 Ω✓

NOTE:
Any correct pair of coordinates chosen from the line drawn
For the equation ε = I(R + r) or ε = Vext + Ir marks are awarded only if the correct I and V values are used from the graph 

(3)
9.2.1 R=  V 
                I
I=  V 
     R
V = IR
21,84 = Itot (8) ✓
Itot = 2,73 A✓
(3)
9.2.2

OPTION 1
9.22a
9.22b

(2)
9.2.3 POSITIVE MARKING FROM QUESTION 9.2.1 AND 9.2.2
OPTION 1
Rtot = (8 + 12 + r) (for the addition)
= (20 + r)
ℇ = I(R + r) ✓
60 = (2,73)(20 + r) ✓
∴ r = 1,98 Ω✓
POSITIVE MARKING FROM QUESTION 9.2.1
OPTION 2
V|| = ItotR||
= (2,73)(12) ✓
= 32,76 V
∴Vterminal = (32,76 + 21,84)  for addition
= 54,6 V
“Vlost” = 60 - 54,6 = 5,4 V
R=  V 
       I
I=  V 
     R
Any of these
V = IR
5,4 = 2,73 r
r = 1,98 Ω✓
ℇ = Vlost + V|| + V8
60 = (V”lost” + 32,76 + 21,84) ✓
V”lost” = 5,4 V
NOTE
:
No penalisation for omitted subscripts (4)
9.2.4

POSITIVE MARKING FROM 9.2 1 AND 9.2.2 (3)   
OPTION 1
W = V2Δt
        R
W = (54.6) (0.2)
          20
= 29,81 J✓
OPTION 2
W = I2RΔt✓
= (2,73)2 (20)(0,2) ✓
= 29,81 J✓
OPTION 3
W = VIΔt✓
= (54,6)(2,73)(0,2) ✓
= 29,81 J ✓

(3)
[20]


QUESTION 10
10.1.1 R: armature/Coil(s)✓
T: (Carbon) brushes✓
X: Slip rings✓
NOTE:
Answers must be in that order if R, T and X are omitted. (3)
10.1.2 Faraday's Law ✓ (1)
10.2.1 15 V✓ (1)
10.2.2

OPTION 1
Vrms = IrmsR
Irms = 15
           45
= 0,333 A
IrmsImax
            √2
Imax =(0,333)√2
= 0,47 A✓
OPTION 2
Vrms = Vmax
            √2
Vmax = (15)√2
= 21,213V
Vmax = Imax R
Imax = 21.213
             45
= 0,47 A✓ 
OPTION 3
Imax= Irms√2
=√2 Vrms
          R
=√2 Vrms
          R
=√2 15
        45
= 0,47 A ✓
OPTION 4
10.22

(4)
[9]

QUESTION 11
11.1 It is the process whereby electrons are ejected from a (metal) surface when light of suitable frequency is incident on that surface. ✓✓ (2)
11.2 INCREASE ✓
Increase in intensity means that (for the same frequency) the number of photons incident per unit time increase. ✓ Therefore the number of electrons ejected per unit time increases. ✓
Thus current increases.(3)
11.3

OPTION 1
E = W0 + Ek(max)
hf = hf0 + Ek(max)
hf = hf0 + ½ mv2
E = W0 + ½ mv2
(6,63 x 10-34 x 5,9 x 1014)  = (6.63 x 10-34)(3 x 108)+ 2,9 x 10-19
                                                                   λ0
39.117 x 10-20 -2.9 x 1019)  = 19.89 x 10-26
                                                      λ0
λo = 1,97 x 10-6 m✓
✓Any one 
OPTION 2
E = W0 + Ek(max)
hf = hf0 + Ek(max)
hf = hf0 + ½ mv2
E = W0 + ½ mv2
(6,63 x 10-34 x 5,9 x 1014) ✓ = (6,63 x 10-34)f0 + 2,9 x 10-19
fo = 1, 52 x 1014 Hz
c = foλo
3 x 108 = (1,52 x 1014) λ0✓
λo = 1,97 x 10-6 m✓
OPTION 3
E = W0 + Ek(max)
hf = hf0 + Ek(max)
hf = hf0 + ½ mv2
E = W0 + ½ mv2
(6,63 x 10-34 x 5,9 x 1014) ✓ =W0 + 2,9 x 10-19
Wo = 1,01 x 10-19 J
Wo= hfo
1,01 x 10-19 = (6,63 x 10-34)fo
fo= 1, 52 x 1014 Hz
c = foλo
3 x 108 = (1,52 x 1014) λ0✓
λo = 1,97 x 10-6 m✓

(5)
11.4 From the photo-electric equation, for a constant work function, ✓ the maximum kinetic energy of the photoelectrons is proportional to the energy of the photons.✓(2)
[12]

Last modified on Thursday, 01 July 2021 07:30