MATHEMATICS PAPER 2
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
JUNE 2017

QUESTION 1

1.1 
Percentages  Frequency  Cumulative Frequency 
30≤𝑥<40   1  1
40≤𝑥<50  2  3
50≤𝑥<60   9  12
60≤𝑥<70   12  24
70≤𝑥<80   11  35
80≤𝑥<90   9  44
90≤𝑥<100   6  50
 
✓ 3, 12
✓ 24, 35, 44
✓ 50
(3) 
1.2   1.2 ✓ upper limits 
✓ cum f 
✓ shape 
✓ grounded
(4) 
1.3  Approx. 30 [accept between 28 – 32]  ✓✓ answer/ indicated on graph.(2) 

[9]

QUESTION 2

  12,4   15,1   18,9   19,7   19,7   20,0
20,9   23,7   23,8   31,1   33,6   34,5
34,9   36,5   40,1  
 
2.1  Minimum = 12.4
Lower quartile (Q1) = 19.7
Median (Q2) = 23.7
Upper quartile (Q3) = 34.5
Maximum = 40.1 
✓ min & max
✓ Q1
✓ Q2
✓ Q3
(4) 
2.2  2.2 ✓ min / max
✓ Q1 / Q3
✓ Q2 (3) 
2.3  Skewed positively to the right.  ✓ positively skewed(1) 
2.4 SD/SA = 8,36  ✓✓ answer (2) 
2.5  A small standard deviation indicates that the data is clustered around the mean.
OR
A large standard deviation indicates that the data is more spread out. 
✓ answer (1) 

[11]

QUESTION 3

3
3.1  M = [ 6+89 −1]
            2    2
M = (7 ; 4) 
✓ x- value of M 
✓ y- value of M
(2) 
3.2  mFM =4−3  
            7−4     3 
𝑦 − 𝑦1 (𝑥 − 𝑥1) m =
               3                      3
y – 4 =  (𝑥 −7) M = (7; 4)
             3
∴ y = 𝑥 + 
          3       3
✓substituting 
✓ value of mFM 
✓ substituting M(7; 4) 
✓ answer
(4) 
3.3  1 =t + 
      3       3
t = -2
OR 
mAF = mFM
3 − 1 = 
4 − 𝑡    3
4 – t = 6
t = -2 
✓ substitution into line equation 
✓ answer (as negative) 
OR
✓ substitution into grad eqn 
✓answer as negative 
(2) 
3.4  mPC =3−(−1) = -1
             4−8
ANSWER ONLY FULL MARKS
✓ substitution 
✓ answer 
(2)
3.5  tanβ = -1
β = 135°
✓ tan β = -1
✓ β = 135° (2)
3.6 tan α = −2 = -
            10       5
∴ α = 180° – 11.310
= 168.69°
𝐴𝐶 ̂𝑃 = 𝛼 − 𝛽
= 33.69° 
✓ tan α = −1
                 5
✓ α = 168.69°
𝐴𝐶 ̂𝑃 = 𝛼 − 𝛽
✓ answer (4) 

[16]

QUESTION 4 

   
4.1  CA =[ 7−11−5 ]
            2       2
= [3; −2]
ANSWER ONLY 
✓x-value
✓ y-value (2) 
4.2  CA2 =(3 − 0)2 + (2 + 2)2
CA2 = 25
CA = 5
CB2 = (7 − 3)2 + (1 + 2)2
CB2 = 25
CB = 5
∴CA = CB 
✓ substitution 
✓ answer for CA
✓ answer for CB
(3) 
4.3  4.3 ✓ substitution
✓ mAD = 7
✓ substitution
✓ mAB 
✓ mAD mAB = -1
(5) 
4.4   (𝑥 − 3)2 + (𝑦 + 2)2 = 25  ✓correct centre 
✓ correct r2 (2) 
4.5  mBC 1-(-2)
              7-3

    4

✓ substitution
✓ mBC  (2) 
4.6  mtan= −
             3
𝑦 − 1 = − (𝑥 − 7)
               3
𝑦 = −𝑥 + 31
         3        3
✓ mtan
✓ subst m=−and B(7;1)
                     3
✓ answer (3)
4.7  AE = DB [diametersof samecircle]
∴ ABED is a rectangle [diagonals =]
  
✓AE = DB ✓ reason
✓ reason (3) 

[20]

QUESTION 5

5.1.1  sin 238° = − sin 58°
= – k 
✓reduction
✓ answer (2) 
5.1.2   cos 58° = sin 32°
= √1 − 𝑘2 
5.12
✓ sin 32°
✓ answer
(2) 
5.2  =        tan(180°−30°).sin(360°−60°).sin10°      
    cos(180°+45°).sin(180°−45°).cos(90°−10°)
=    (−tan30°)(−sin60°)sin10° 
       (−cos45°)(sin45°)sin10°
5.2
✓ - tan 30°
✓ - sin 60°
✓ - cos 45°
✓ sin 45°
✓ sin 10°
✓ simplification
✓ answer  (7)
5.3  sin(𝛼+𝛽)=cos [ 90°−(𝛼+𝛽)]
=cos[(90− 𝛼)− 𝛽]
=cos(90°− 𝛼)cos𝛽−sin(90°− 𝛼)𝑐𝑜𝑠𝛽
=sin𝛼cos𝛽−cos𝛼sin𝛽 
✓ cos [ 90°−(𝛼+𝛽)]
✓ cos[(90− 𝛼)− 𝛽]
✓ cos(90°− 𝛼)cos𝛽−sin(90°− 𝛼)𝑐𝑜𝑠𝛽
✓ sin𝛼cos𝛽−cos𝛼sin𝛽 (4)
5.4    cos2𝑥+1   =       2cos2𝑥−1+1     
sin2𝑥.tan𝑥     2sin𝑥cos𝑥 .  sin𝑥
                                         cos𝑥
2 𝑐𝑜𝑠2𝑥
2 𝑠𝑖𝑛2𝑥
=   1     
   𝑡𝑎𝑛2𝑥 
✓ identity numerator
✓ identity denominator
 sin𝑥 
   cos𝑥
✓cos 2𝑥 simplification
    𝑠𝑖𝑛2𝑥
(4)
5.5.1  sin𝑥 =2sin𝑥 
cos𝑥
sin𝑥=2sin𝑥cos𝑥
sin𝑥−2sin𝑥cos𝑥=0
sin𝑥(1−2cos𝑥)=0
sin𝑥=0 or cos𝑥= ½
✓ identity (sin𝑥)
                 cos𝑥
✓ simplification
✓ factors
(3)
5.5.2  sin𝑥=0 or cos𝑥= ½
𝑥=0°+360°𝑘,𝑘∈𝑍
OR                         𝑥= ±60°+360°𝑘
𝑥=180°+360°𝑘             𝑘 ∈ 𝑍 
✓ 𝑥=0°
✓ 𝑥=180°
✓ 𝑥= ±60°
✓ 360°𝑘 ,𝑘∈𝑍(4)

[26]

QUESTION 6 

Related Items

6.1  6.1
✓ Endpoints  ( f ) ✓ Endpoints  ( g )
✓ (45° ; 1) ( f ) ✓ (-45° ; 0) / (135° ; 0) / x-intercepts ( g )
✓ Asymptotes ( f ) ✓ Shape  ( g )
(6) 
 
6.2.1  x = -45°  ✓✓ -45°
(2) 
6.2.2  (-90°;45°] OR -90°< x ≤ 45°  ✓ 90° and 45°
✓correct inequalities (2) 
6.3  90°  ✓ answer  (1) 

[11]

QUESTION 7

 7
7.1   In ΔABC
 AC 
sin 𝑘  sin 𝑧
∴AC = 𝑑.sin 𝑘
             𝑠𝑖𝑛𝑧 
ANSWER ONLY
✓ proportion 
✓ answer 
(2) 
7.2  In ΔADC
     AC        =   ℎ  
sin(90°−𝑦)    sin 𝑦
AC = ℎ.cos 𝑦
           sin 𝑦
AC =   h  
        𝑡𝑎𝑛 𝑦
OR
 AC
  ℎ     𝑡𝑎𝑛𝑦
AC =   h  
        𝑡𝑎𝑛 𝑦
✓ proportion
✓ answer 
 AC
  ℎ     𝑡𝑎𝑛𝑦
AC =   h  
        𝑡𝑎𝑛𝑦
(2)
7.3  ℎ = AC. sin 𝑦
        cos 𝑦
ℎ = 𝑑 sin 𝑘. sin 𝑦
      cos 𝑦. sin 𝑧
ℎ = d. tan 𝑦. sin 𝑘
            sin 𝑧
OR
𝐴𝐶 =   ℎ  
       tan 𝑦
𝐴𝐶 = 𝑑. sin 𝑘
           sin 𝑧
   ℎ  𝑑.sin 𝑘
   tan 𝑦     sin 𝑧
∴ ℎ = 𝑑 sin 𝑘 . 𝑡𝑎𝑛𝑦
                𝑠𝑖𝑛𝑧 
✓ subst AC = 𝑑.sin 𝑘
                          𝑠𝑖𝑛𝑧
OR
✓ equating AC (1)
7.4  ∴ ℎ = 𝑑 sin 𝑘 . 𝑡𝑎𝑛𝑦
               𝑠𝑖𝑛𝑧
ℎ = 80 . sin 38°. tan 40°
               sin 125
=50,45m 
✓ substitution 
✓ answer 
(2)

[7]

QUESTION 8 

   8
8.1   Line from centre perpendicular to chord, bisects the chord.  ✓ answer (1) 
8.2.  AĈB = 90° [ angle in semi-circle] 
AĈB = D̂1 [ both = 90°]
∴OE || AC [corresp ∠'s equal]
✓ S ✓R
✓ R (3)
8.3  Â = x [ tan chord] 
EÔB = x [corresp ∠s' ; AC || OE] 
✓S ✓R
✓S ✓R (4)
8.4  EÔB = EĈB [ both = x]
∴ OBEC is cyclic quad [converse angles in same segment]
✓S
✓R
(2)

[10]

QUESTION 9

   9
9.1 Â= 49° [ ∠ at centre=2 ∠ at circumf. ✓S ✓R (2) 
9.2   1 = B̂1 [angles opp equal sides]
1 =180°−98°   [ angles of Δ]
            2
𝐵1 = 41° 
✓R
✓R
✓ S (3)
9.3  BĈD = 90° [ ∠’s in semi-circle] 
2 = Ĉ3 = 26° [ ∠’s in same segment] 
2 = 23°
✓ S/R
✓ S/R
✓ S (3)

[8]

QUESTION 10

   10
10.1.1  QR2 = PQ2 + PR2             Pyth.Theo
= 62 + 82
UR
  RQ    10
✓ subst. in Pyth
✓ QR = 10 
UR = ½
RQ    
(3)
10.1.2  PM = 4    [diagonals bisecteachother]
QM2 = 62 + 42    [Pyth.Theo]
QM = 2√13 
MS = QM = 2√13 [Diagonals bisecteachother]
∴MV = √13
VM√13 
  MQ   2√13 
= ½
✓ R
✓ QM = 2√13 
✓ MV = √13
VM = ½
MQ    
(4)
10.2 

 UR  VM      [both = ½]
 RQ      MQ
∴MR = VU [line divides two sides of Δ in prop]

✓ S
✓ R (2)

[9]

QUESTION 11 

   11
11.1  Constr.
On AB mark off AG = DE 
On AC mark off AH = DF 
Join GH. 
Proof : In ΔAGH & ΔDEF:
i) AG = DE (constr) 
ii) Â = D̂ (given) 
iii) AH = DF (constr) 
∴ ΔAGH ||| ΔDEF (SAS) 
∴ Ĝ1 = Ê
But 𝐵 ̂= 𝐸 ̂ given
∴ Ĝ1 = B̂
∴ GH || BC (corresp angles equal) 
𝐴𝐵 = 𝐴𝐶
   𝐴𝐺   𝐴𝐻
𝐴𝐵 = 𝐴𝐶
   𝐷𝐸   𝐷𝐹   ( AG= DE, AH = DF)
AB = AC= BC
   DE   DF    EF 

✓constr 
✓S
✓ S/R
✓S ✓R
✓S ✓R (7) 
11.2    11.2
11.2.1  R2 = 𝑥 [ tan chord] 
T1 = 𝑥 [ ∠’s opp equal sides] 
Q3 = 𝑥 [ tan chord] 
R1 = 𝑥 [ tan from same point]
✓ S/R
✓ S/R
✓ S/R
✓ S/R
(any three) (3)
11.2.2  Q2 = 180° − 2𝑥 [ angles of Δ]  ✓S ✓R (2) 
11.2.3  𝑃 ̂ = 180° − 2𝑥 [sum of angles of Δ PQR]
R3 = 𝑄2 = 180° − 2𝑥 [ tan chord]
∴ TR || QP [ corresp ∠’s =]  
✓ S
✓ S/R
✓ R (3)
11.2.4  In Δ STR & Δ SRQ
Ŝ = Ŝ common 
3 = Q̂2 tan chord 
∴ ΔSTR |||ΔSRQ [ AAA] / [HHH] 
✓ S
✓ S
✓ R (3)
11.2.5  ST = SR
SR    SQ
ΔSTR |||ΔSRQ
RS2 = ST. SQ 
✓ S ✓R
(2)
11.2.6 SP = SQ       [line toonesideof a Δ]
PR    TQ
=
   3
PQ = PR [tan fromsamepoint]
SP
PQ    3



✓ S/R
✓ R
valueof SP
            PQ     3
(3)

[23]

TOTAL: 150

Last modified on Thursday, 08 July 2021 07:02