MATHEMATICS PAPER 2
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
JUNE 2017
QUESTION 1
1.1 |
| ✓ 3, 12 ✓ 24, 35, 44 ✓ 50 (3) | ||||||||||||||||||||||||
1.2 | ✓ upper limits ✓ cum f ✓ shape ✓ grounded (4) | |||||||||||||||||||||||||
1.3 | Approx. 30 [accept between 28 – 32] | ✓✓ answer/ indicated on graph.(2) |
[9]
QUESTION 2
12,4 15,1 18,9 19,7 19,7 20,0 20,9 23,7 23,8 31,1 33,6 34,5 34,9 36,5 40,1 | ||
2.1 | Minimum = 12.4 Lower quartile (Q1) = 19.7 Median (Q2) = 23.7 Upper quartile (Q3) = 34.5 Maximum = 40.1 | ✓ min & max ✓ Q1 ✓ Q2 ✓ Q3 (4) |
2.2 | ✓ min / max ✓ Q1 / Q3 ✓ Q2 (3) | |
2.3 | Skewed positively to the right. | ✓ positively skewed(1) |
2.4 | SD/SA = 8,36 | ✓✓ answer (2) |
2.5 | A small standard deviation indicates that the data is clustered around the mean. OR A large standard deviation indicates that the data is more spread out. | ✓ answer (1) |
[11]
QUESTION 3
3.1 | M = [ 6+8 ; 9 −1] 2 2 M = (7 ; 4) | ✓ x- value of M ✓ y- value of M (2) |
3.2 | mFM =4−3 = 1 7−4 3 𝑦 − 𝑦1 = 1 (𝑥 − 𝑥1) m = 1 3 3 y – 4 = 1 (𝑥 −7) M = (7; 4) 3 ∴ y = 1 𝑥 + 5 3 3 | ✓substituting ✓ value of mFM ✓ substituting M(7; 4) ✓ answer (4) |
3.3 | 1 = 1 t + 5 3 3 t = -2 OR mAF = mFM 3 − 1 = 1 4 − 𝑡 3 4 – t = 6 t = -2 | ✓ substitution into line equation ✓ answer (as negative) OR ✓ substitution into grad eqn ✓answer as negative (2) |
3.4 | mPC =3−(−1) = -1 4−8 ANSWER ONLY FULL MARKS | ✓ substitution ✓ answer (2) |
3.5 | tanβ = -1 β = 135° | ✓ tan β = -1 ✓ β = 135° (2) |
3.6 | tan α = −2 = - 1 10 5 ∴ α = 180° – 11.310 = 168.69° 𝐴𝐶 ̂𝑃 = 𝛼 − 𝛽 = 33.69° | ✓ tan α = −1 5 ✓ α = 168.69° 𝐴𝐶 ̂𝑃 = 𝛼 − 𝛽 ✓ answer (4) |
[16]
QUESTION 4
4.1 | CA =[ 7−1 ; 1−5 ] 2 2 = [3; −2] ANSWER ONLY | ✓x-value ✓ y-value (2) |
4.2 | CA2 =(3 − 0)2 + (2 + 2)2 CA2 = 25 CA = 5 CB2 = (7 − 3)2 + (1 + 2)2 CB2 = 25 CB = 5 ∴CA = CB | ✓ substitution ✓ answer for CA ✓ answer for CB (3) |
4.3 | ✓ substitution ✓ mAD = 7 ✓ substitution ✓ mAB ✓ mAD mAB = -1 (5) | |
4.4 | (𝑥 − 3)2 + (𝑦 + 2)2 = 25 | ✓correct centre ✓ correct r2 (2) |
4.5 | mBC = 1-(-2) 7-3 = 3 4 | ✓ substitution ✓ mBC (2) |
4.6 | mtan= −4 3 𝑦 − 1 = − 4 (𝑥 − 7) 3 𝑦 = −4 𝑥 + 31 3 3 | ✓ mtan ✓ subst m=−4 and B(7;1) 3 ✓ answer (3) |
4.7 | AE = DB [diametersof samecircle] ∴ ABED is a rectangle [diagonals =] | ✓AE = DB ✓ reason ✓ reason (3) |
[20]
QUESTION 5
5.1.1 | sin 238° = − sin 58° = – k | ✓reduction ✓ answer (2) |
5.1.2 | cos 58° = sin 32° = √1 − 𝑘2 | ✓ sin 32° ✓ answer (2) |
5.2 | = tan(180°−30°).sin(360°−60°).sin10° cos(180°+45°).sin(180°−45°).cos(90°−10°) = (−tan30°)(−sin60°)sin10° (−cos45°)(sin45°)sin10° | ✓ - tan 30° ✓ - sin 60° ✓ - cos 45° ✓ sin 45° ✓ sin 10° ✓ simplification ✓ answer (7) |
5.3 | sin(𝛼+𝛽)=cos [ 90°−(𝛼+𝛽)] =cos[(90− 𝛼)− 𝛽] =cos(90°− 𝛼)cos𝛽−sin(90°− 𝛼)𝑐𝑜𝑠𝛽 =sin𝛼cos𝛽−cos𝛼sin𝛽 | ✓ cos [ 90°−(𝛼+𝛽)] ✓ cos[(90− 𝛼)− 𝛽] ✓ cos(90°− 𝛼)cos𝛽−sin(90°− 𝛼)𝑐𝑜𝑠𝛽 ✓ sin𝛼cos𝛽−cos𝛼sin𝛽 (4) |
5.4 | cos2𝑥+1 = 2cos2𝑥−1+1 sin2𝑥.tan𝑥 2sin𝑥cos𝑥 . sin𝑥 cos𝑥 2 𝑐𝑜𝑠2𝑥 2 𝑠𝑖𝑛2𝑥 = 1 𝑡𝑎𝑛2𝑥 | ✓ identity numerator ✓ identity denominator ✓ sin𝑥 cos𝑥 ✓cos 2𝑥 simplification 𝑠𝑖𝑛2𝑥 (4) |
5.5.1 | sin𝑥 =2sin𝑥 cos𝑥 sin𝑥=2sin𝑥cos𝑥 sin𝑥−2sin𝑥cos𝑥=0 sin𝑥(1−2cos𝑥)=0 sin𝑥=0 or cos𝑥= ½ | ✓ identity (sin𝑥) cos𝑥 ✓ simplification ✓ factors (3) |
5.5.2 | sin𝑥=0 or cos𝑥= ½ 𝑥=0°+360°𝑘,𝑘∈𝑍 OR 𝑥= ±60°+360°𝑘 𝑥=180°+360°𝑘 𝑘 ∈ 𝑍 | ✓ 𝑥=0° ✓ 𝑥=180° ✓ 𝑥= ±60° ✓ 360°𝑘 ,𝑘∈𝑍(4) |
[26]
QUESTION 6
6.1 | ✓ Endpoints ( f ) ✓ Endpoints ( g ) ✓ (45° ; 1) ( f ) ✓ (-45° ; 0) / (135° ; 0) / x-intercepts ( g ) ✓ Asymptotes ( f ) ✓ Shape ( g ) (6) | |
6.2.1 | x = -45° | ✓✓ -45° (2) |
6.2.2 | (-90°;45°] OR -90°< x ≤ 45° | ✓ 90° and 45° ✓correct inequalities (2) |
6.3 | 90° | ✓ answer (1) |
[11]
QUESTION 7
7.1 | In ΔABC AC = d sin 𝑘 sin 𝑧 ∴AC = 𝑑.sin 𝑘 𝑠𝑖𝑛𝑧 ANSWER ONLY | ✓ proportion ✓ answer (2) |
7.2 | In ΔADC AC = ℎ sin(90°−𝑦) sin 𝑦 AC = ℎ.cos 𝑦 sin 𝑦 AC = h 𝑡𝑎𝑛 𝑦 OR AC = 1 ℎ 𝑡𝑎𝑛𝑦 AC = h 𝑡𝑎𝑛 𝑦 | ✓ proportion ✓ answer AC = 1 ℎ 𝑡𝑎𝑛𝑦 AC = h 𝑡𝑎𝑛𝑦 (2) |
7.3 | ℎ = AC. sin 𝑦 cos 𝑦 ℎ = 𝑑 sin 𝑘. sin 𝑦 cos 𝑦. sin 𝑧 ℎ = d. tan 𝑦. sin 𝑘 sin 𝑧 OR 𝐴𝐶 = ℎ tan 𝑦 𝐴𝐶 = 𝑑. sin 𝑘 sin 𝑧 ∴ ℎ = 𝑑.sin 𝑘 tan 𝑦 sin 𝑧 ∴ ℎ = 𝑑 sin 𝑘 . 𝑡𝑎𝑛𝑦 𝑠𝑖𝑛𝑧 | ✓ subst AC = 𝑑.sin 𝑘 𝑠𝑖𝑛𝑧 OR ✓ equating AC (1) |
7.4 | ∴ ℎ = 𝑑 sin 𝑘 . 𝑡𝑎𝑛𝑦 𝑠𝑖𝑛𝑧 ℎ = 80 . sin 38°. tan 40° sin 125 =50,45m | ✓ substitution ✓ answer (2) |
[7]
QUESTION 8
8.1 | Line from centre perpendicular to chord, bisects the chord. | ✓ answer (1) |
8.2. | AĈB = 90° [ angle in semi-circle] AĈB = D̂1 [ both = 90°] ∴OE || AC [corresp ∠'s equal] | ✓ S ✓R ✓ R (3) |
8.3 | Â = x [ tan chord] EÔB = x [corresp ∠s' ; AC || OE] | ✓S ✓R ✓S ✓R (4) |
8.4 | EÔB = EĈB [ both = x] ∴ OBEC is cyclic quad [converse angles in same segment] | ✓S ✓R (2) |
[10]
QUESTION 9
9.1 | Â= 49° [ ∠ at centre=2 ∠ at circumf. | ✓S ✓R (2) |
9.2 | Ĉ1 = B̂1 [angles opp equal sides] B̂1 =180°−98° [ angles of Δ] 2 𝐵1 = 41° | ✓R ✓R ✓ S (3) |
9.3 | BĈD = 90° [ ∠’s in semi-circle] B̂2 = Ĉ3 = 26° [ ∠’s in same segment] Ĉ2 = 23° | ✓ S/R ✓ S/R ✓ S (3) |
[8]
QUESTION 10
10.1.1 | QR2 = PQ2 + PR2 Pyth.Theo = 62 + 82 ∴UR = 5 RQ 10 =½ | ✓ subst. in Pyth ✓ QR = 10 UR = ½ RQ (3) |
10.1.2 | PM = 4 [diagonals bisecteachother] QM2 = 62 + 42 [Pyth.Theo] QM = 2√13 MS = QM = 2√13 [Diagonals bisecteachother] ∴MV = √13 ∴VM = √13 MQ 2√13 = ½ | ✓ R ✓ QM = 2√13 ✓ MV = √13 VM = ½ MQ (4) |
10.2 | UR = VM [both = ½] | ✓ S ✓ R (2) |
[9]
QUESTION 11
11.1 | Constr. On AB mark off AG = DE On AC mark off AH = DF Join GH. Proof : In ΔAGH & ΔDEF: i) AG = DE (constr) ii) Â = D̂ (given) iii) AH = DF (constr) ∴ ΔAGH ||| ΔDEF (SAS) ∴ Ĝ1 = Ê But 𝐵 ̂= 𝐸 ̂ given ∴ Ĝ1 = B̂ ∴ GH || BC (corresp angles equal) ∴ 𝐴𝐵 = 𝐴𝐶 𝐴𝐺 𝐴𝐻 ∴ 𝐴𝐵 = 𝐴𝐶 𝐷𝐸 𝐷𝐹 ( AG= DE, AH = DF) ∴ AB = AC= BC DE DF EF | ✓constr ✓S ✓ S/R ✓S ✓R ✓S ✓R (7) |
11.2 | ||
11.2.1 | R2 = 𝑥 [ tan chord] T1 = 𝑥 [ ∠’s opp equal sides] Q3 = 𝑥 [ tan chord] R1 = 𝑥 [ tan from same point] | ✓ S/R ✓ S/R ✓ S/R ✓ S/R (any three) (3) |
11.2.2 | Q2 = 180° − 2𝑥 [ angles of Δ] | ✓S ✓R (2) |
11.2.3 | 𝑃 ̂ = 180° − 2𝑥 [sum of angles of Δ PQR] R3 = 𝑄2 = 180° − 2𝑥 [ tan chord] ∴ TR || QP [ corresp ∠’s =] | ✓ S ✓ S/R ✓ R (3) |
11.2.4 | In Δ STR & Δ SRQ Ŝ = Ŝ common R̂3 = Q̂2 tan chord ∴ ΔSTR |||ΔSRQ [ AAA] / [HHH] | ✓ S ✓ S ✓ R (3) |
11.2.5 | ST = SR SR SQ ΔSTR |||ΔSRQ RS2 = ST. SQ | ✓ S ✓R (2) |
11.2.6 | SP = SQ [line toonesideof a Δ] PR TQ = 5 3 PQ = PR [tan fromsamepoint] SP = 5 PQ 3 | ✓ S/R ✓ R valueof SP = 5 PQ 3 (3) |
[23]
TOTAL: 150