PHYSICAL SCIENCES: CHEMISTRY PAPER 2 GRADE 12 MEMORANDUM - NSC PAST PAPERS AND MEMOS FEBRUARY/MARCH 2017

Share via Whatsapp Join our WhatsApp Group Join our Telegram Group

PHYSICAL SCIENCES: CHEMISTRY
PAPER 2
GRADE 12 
NSC PAST PAPERS AND MEMOS
FEBRUARY/MARCH 2017

MEMORANDUM 

QUESTION 1
1.1 B ✔✔ (2)
1.2 B ✔✔ (2)
1.3 A ✔✔ (2)
1.4 A ✔✔ (2)
1.5 C ✔✔ (2)
1.6 D ✔✔ (2)
1.7 C ✔✔ (2)
1.8 B ✔✔ (2)
1.9 C ✔✔ (2) 
1.10 A ✔✔ (2)

[20] 

QUESTION 2
2.1 

2.1.1 B ✔ (1)
2.1.2 D OR/OF E ✔ (1)
2.1.3 F ✔ (1) 

2.2 

2.2.1 Butanal ✔ (1) 
2.2.2 2,3,3-trimethyl✔but-1-ene ✔ 
Accept
2,3,3- trimethyl ✔-1- butene

Marking criteria:

  • Correct stem i.e. but-1-ene / 1-butene. ✔
  • Substituents correctly identified. ✔
  • Substituents correctly numbered, hyphens and commas correctly used. ✔

hoho(3) 

Marking criteria: 

  • Whole structure correct:
  • Only functional group correct:
    Max 21

(2) 
2.4 

2.4.1 Esterification / Condensation ✔   (1) 
2.4.2 Propan-1-ol ✔ ✔ 
If propanol (1 mark)  (2) 
2.4.3  hoho2

Marking criteria:

  • Whole structure correct:2/2
  • Only functional group correct
    Max/1/2

(2) 

2.4.4 Propyl ✔ butanoate ✔(2)

[16] 

QUESTION 3
3.1

  • The temperature at which the vapour pressure equals atmospheric (external)  pressure. ✔✔ (2 or 0)  (2) 

3.2

  • Flammable / Catch fire easily. / Volatile ✔ (1) 

3.3 
3.3.1

  • Use straight chain✔ primary alcohols ✔ (2) 

3.3.2. OPTION 1

  • Structure
    Chain length / more C atoms in chain / molecular size / molecular mass / surface area increases from top to bottom / butan-1-ol to hexan-1-ol.✔
  • Intermolecular forces
    Intermolecular forces / Van der Waals forces / London forces / dispersion  forces increases from top to bottom / butan-1-ol to hexan-1-ol. ✔
  • Energy
    Energy needed to overcome / break intermolecular forces increases from  top to bottom / butan-1-ol to hexan-1-ol. ✔

OPTION 2

  • Structure
    Chain length / number of C atoms in the chain / molecular size / molecular  mass/surface area decreases from bottom to top / hexan-1-ol to  butan-1-ol. ✔
  • Intermolecular forces
    Intermolecular forces / Van der Waals forces/London forces / dispersion  forces decreases from bottom to top/hexan-1-ol to butan-1-ol. ✔
  • Energy
    Energy needed to overcome / break intermolecular forces decreases from  bottom to top / hexan-1-ol to butan-1-ol. ✔  (3) 

3.4 Remains the same / Bly dieselfde ✔ (1) 
3.5 

3.5.1 Functional group / Type of homologous series ✔ (1) 
3.5.2

  • Type of intermolecular forces
    Between molecules of aldehyde / hexanal are dipole-dipole forces. ✔
  • Between molecules of alcohols / hexan-1ol are (in addition to dipole-dipole  forces and London forces) hydrogen bonds. ✔
  • Strength of intermolecular forces
    Dipole-dipole forces are weaker than hydrogen bonds. ✔
    OR
    Hydrogen bonds are stronger than dipole-dipole forces.
  • Energy
    More energy needed to overcome / break intermolecular forces in  hexan-1-ol. ✔
    OR
    Less energy needed to overcome / break intermolecular forces in  hexanal.✔  (4)

[14]

QUESTION 4
4.1 

4.1.1 Substitution / hydrolysis ✔ (1)
4.1.2 H2O/water ✔
OR
Dilute sodium hydroxide /NaOH(aq) 
OR
Dilute potassium hydroxide/KOH(aq)(1)
4.1.3 Tertiary ✔ (1) 
4.1.4 Elimination / dehydrohalogenation / dehydrobromination ✔ (1) ✔✔
4.1.5 2-methylprop-1-ene / methylpropene / 2-methylpropene  (2) 
4.1.6 Halogenation / bromination ✔ (1) 
4.1.7   hoho3(4) 

  • Whole structure correct. ✔✔
  • Only functional group correct. ✔

Notes: 

  • Ignore ⇌
  • Accept Br2 if condensed.
  • Marking rule 3.9
  • Condensed or semi-structural formula: Max. 3/4
  • Molecular formula 1/4
  • Any additional reactants or products: Max. 3/4
  • Everything correct, arrow in equation omitted: Max. 3/4 

4.2 

4.2.1 Monomers  ✔ (1)
4.2.2 Alkenes ✔ (1) 
4.2.3 Addition (polymerisation) ✔ (1)

[14] 

QUESTION 5/VRAAG 5 
5.1 ANY TWO:

  • Increase temperature of HCℓ. ✔
  • Add a catalyst ✔
  • Increase the concentration of HCℓ. ✔
  • Increase the state of division of CuCO
  • Agitation / Stirring  ✔ (2)

5.2 Accepted range : 42 s to 50 s ✔ (1) 
5.3 
5.3.

  • average = - Δ m
                        Δ t
    = - (169,76 - 170,000)✔
                 (20 - 0) ✔
    = 0,012(g.s-1)✔

If answer is negative (minus 1 mark)  (3) 
5.3.2 Pure sample:
m(CO2)formed = 170,00 – 169,73 ✔
 = 0,27 g  
Impure sample:
m(CO2)formed = 170,00 - 169,78 ✔
 = 0,22 g  
%Purity = 0,22 × 100  ✔
                0,27 
= 81,48% ✔ (4) 

5.3.3 POSITIVE MARKING FROM QUESTION 5.3.2. 

  • n(CO2) formed  =
                                M
    = 0,27
        44
    = 6,13   ×  10-3 mol
    n(CO2) formed  = V 
                                VM
    6,13 × 10-3 =      V  
                            22,4
    V = 0,137 dm3    (3) 

5.4 POSITIVE MARKING FROM QUESTION 5.2. 
GRAPH 22

Marking criteria for sketch graph:   

Graph drawn from origin with  decreasing gradient. 

Constant volume after (42 -50) s.or graph stops at (42 -50) s 

If no labels on axes: minus 1.

 

(2) 

[15] 

QUESTION 6
6.1 Amount / number of moles / volume of (gas) reactants equals amount/number  of moles/volume of (gas) products. ✔
OR
A change in pressure will change the concentration of the reactants and  products equally. (1) 
6.2 

CALCULATIONS USING NUMBER OF MOLES 
Mark allocation:

  • Divide equilibrium amounts of H2 and I2 by 2 dm3. ✔
  • Correct Kc expression (formulae in square brackets). ✔
  • Substitution of equilibrium concentrations into Kc expression. ✔
  • Substitution of Kc value. ✔
  • Change in n(HI) = n(HI at equilibrium). 
  • USING ratio: H2 : I2 ; HI = 1 : 1 : 2 ✔
  • Initial n(I2) = equilibrium n(I2) + change in n(I2) ✔
  • Substitute 254 g·mol-1as molar mass for I2.✔
  • Final answer: 24,89 - 24,92 (g) ✔

OPTION 1
KC   [HI]2   
         [H2][I2]
∴55,3 =         [HI]2               
             (0,014)(0,0085)
∴[HI] = 0,08112 mol.dm-3

No Kc expression, correct substitution
 Max. 8/9
Wrong Kc expression
Max.6/9
 

H2 

I2 

HI

 

Initial mass (g) 

 

(0,09812)(254) ✔
= 24,92 g ✔

   

Initial quantity (mol) 

0,1091 

0,09812 

0

 

Change (mol) 

0,08112 

0,08112 ✔

0,1622 ✔

using ratio

Quantity at equilibrium (mol)/ 

0,028 

0,017 

0,1622

 

Equilibrium concentration (mol∙dm-3

0,014 

0,0085 

0,08112

×  2
  Divide by 2 ✔    

OR
KC   [HI]2   
         [H2][I2]
∴55,3 =         X2               
             (0,014)(0,0085)
∴X = 0,08112 mol.dm-3

No Kc expression, correct substitution
 Max. 8/9
Wrong Kc expression
Max.6/9
 

H2 

I2 

HI

 

Initial mass (g) 

 

 

   

Initial quantity (mol) 

x + 0,028 

x + 0,017

0

 

Change (mol) 

x

x

2x

using ratio

Quantity at equilibrium (mol)/ 

0,028 

0,017 

2x

 

Equilibrium concentration (mol∙dm-3

0,014 

0,0085 

x

×  2
  Divide by 2 ✔    

Initial quantity I2(mol) (mol) = 0,08112 + 0,017 
= 0,09812 mol 
m(I2) = nM 
 = (0,09812)(254) ✔
= 24,92 g ✔

OPTION 2

calc
n(HI at equilibrium) = (0,08112)(2) = 0,1622 mol 
n(HI formed) = n(HI at equilibrium) = 0,1622 mol
n(I2 reacted) = ½n(HI formed) = 0,08112 mol 
n(I2 initial) = n(I2 reacted) + n(I2 equilibrium)  
= 0,08112 + 0,017 
 = 0,09812 mol 
m(I2 initial) = nM 
 = (0,09812)(254) 
 = 24,92 (g)✔

CALCULATIONS USING CONCENTRATION 
Mark allocation:

  • Divide equilibrium moles of H2 and I2 by 2 dm3.
  • Correct Kc expression (formulae in square brackets).
  • Substitution of equilibrium concentrations into Kc expression.
  • Substitution of Kc value
  • Change in n(HI) = n(HI at equilibrium).
  • USING ratio: H2 : I2 : HI = 1 : 1 : 2 
  • Initial [I2] = equilibrium [I2] + change in [I2] (I2) 
  • Substitute 254 g·mol-1as molar mass for I2.
  • Final answer: 24,89 – 24,92 (g)

OPTION 3
answer op 3
6.3 (Chemical/dynamic) equilibrium 
OR
The rate of the forward reaction equals the rate of the reverse reaction. ✔  (1) 
6.4

  • Addition of a catalyst.
  • Increase in pressure. (2) 

6.5.1 Endothermic 

  • The rate of the forward reaction decreases more. / The rate of the reverse  reaction decreases less.
  • A decrease in temperature favours the exothermic reaction. (3)

6.5.2 Decreases  (1) 
6.6 Reactants / H2 / I2 removed

[18] 

QUESTION 7
7.1 A substance that ionises incompletely/to a small extent.(2) 
7.2

  • Oxalic acid
  • Higher Ka value
    OR
  • Carbonic acid has a lower Ka value .(2) 

7.3 

  • H2O
  • (COO)22 (2) 

7.4 7.4(4) 
7.5 
7.5.1 7.5(5)

7.5.2

  • C / phenolphthalein
  • Titration of weak acid and strong base.
    OR
  • The endpoint will be at pH > 7 which is in the range of the indicator.  (2)

[17] 

QUESTION 8
8.1 

8.1.1 Salt bridge  (1) 
8.1.2 Voltaic / Galvanic cell (1) 

8.2 

8.2.1 Decreases(1)
8.2.2 Increases (1) 

8.3 

8.3.1 Y(s) → Y2+(aq) + 2e- Ignore phases
OR
Mg(s) → Mg2+(aq) + 2e -

Notes
Y(s) ⇌ Y2+(aq) + 2e- (1/2)                                   Y2+(aq) + 2e- ← Y(s) (2/2) 

0) Y2+(aq) + 2e- ⇌ Y(s) (0/2)                                Y(s) ← Y2+(aq) + 2e- (0/2)

(2) 

8.3.2 Y(s) |Y2+(aq) ||Aℓ3+(aq) | Aℓ(s) OR/OF Mg(s) |Mg2+(aq) ||Aℓ3+(aq) | Aℓ(s 
OR
Y(s) | Y2+ (1 mol∙dm-3) || Aℓ3+(1 mol∙dm-3) | Aℓ(s) 
Accept
Y | Y2+ || Aℓ3+ | Aℓ (3) 
8.4 (5) 

OPTION 1
Eθcell =  Eθreduction -  Eθoxidation 

0,7 = -1, 66 - Eθoxidation 

Eθoxidation  =  -2,36 (V)

Y is Mg  

Notes

  • Accept any other correct formula from the  data sheet.
  • Any other formula using unconventional  abbreviations, e.g. E°cell = E°OA - E°RA  followed by correct substitutions:

OPTION 2

op2

[14] 

QUESTION 9
9.1 Bauxite (1)
9.2 Oxidation  (1)
9.3 Reduce melting point .
OR
To lower the temperature / energy needed to melt the Aℓ2O3. (1) 

ACCEPT

  • To dissolve the Aℓ2O3. so that it can electrolysed easier 

9.4 Aℓ3+(aq) + 3e- → Aℓ(s)
Ignore phases

Notes
Aℓ ← Aℓ3++ 3e- (2 /2)                       Aℓ3+ 3e- ⇌ Aℓ (1/2) 
Aℓ3+ 3e ← Aℓ (0/2                             Aℓ ⇌ Aℓ2+ + 3e- (0/2) 

(2) 
9.5

  • C + O2  → CO2  Bal
    OR
  • 2Aℓ2O3 + 3C  → 4Aℓ + 3CO2  Bal  

Notes

  • Reactants        Products                              Balancing
  • Ignore double arrows.
  • Marking rule 6.3.10

(3) 

[8]

QUESTION 10/VRAAG 10 
10.1 
10.1.1 Ostwald (process) (1) 
10.1.2 Catalyst/Speeds up the rate of the reaction (1)
10.1.3 Nitrogen dioxide  (1)
10.1.4 3NO2 + H2O ⇌ 2HNO3(aq) + NO Bal.  (2) 

Notes:

  • Products        Balancing
  • Ignore double arrows.
  • Marking rule 6.3.10. 

10.1.5

  • Decrease pressure / Increase volume
  • Decrease temperature \ (2) 

10.2 
10.2.1 (Ratio of the) nitrogen, phosphorous and potassium in the fertiliser.  (1)
10.2.2 (6) 

Marking criteria:

  • Use ratio 3/8
  • x 50 kg
  • x 25 / 25 %
  • Divide previous answer by  39
  • Multiply by 74,5 
  • Final answer 8,94 kg
ans 4 10
 

OPTION 4
%K =3/8 x 25 = 9,38% 

m(K) = 9,38  x 50 = 4,69 kg 
            100 
%K in KCℓ =   39   x 100 = 52,35% 
                    74,5 
52,35% KCℓ: 4,69 kg 

m(100% KCℓ) = 4,69  x 100 
                         52,35 
 = 8,96 kg

[14] 
TOTAL: 150

Last modified on Thursday, 08 July 2021 11:51