GRADE 12 MATHEMATICS
PAPER 1Â
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017
NOTE:
QUESTION 1Â
ðžâ
1.1 | 2ð¥(ð¥ + 1) â 7(ð¥ + 1) = 0 (ð¥ + 1)(2ð¥ â 7) = 0 ð¥ = â1    or   ð¥ = 72 | ðž factors ðž ð¥-value ðž ð¥-value |  (3) |
 |  |  |  |
 1.2 |  ð¥2 â 5ð¥ â 1 = 0 ð¥ = âð ± âð2 â 4ðð        2ð                                  ð¥ = â(â5) ± â(â5)2 â 4(1)(â1)            2(1) ð¥ = 5,19 or ð¥ = â0,19 |  ðž substitution into correct formula ðžðž x- values |  (3) |
 |  |  |  |
1.3 | 4ð¥2 + 1 ⥠5ð¥ 4ð¥2 â 5ð¥ + 1 ⥠0 (4ð¥ â 1)(ð¥ â 1) ⥠0 x †1/4    or     ð¥ †1   | ðž standard form ðž factors  ðžð¥ †Œ ðžð¥ ⥠1 |  (4) |
 |  |  |  |
1.4 | 54ð¥+3. 100â2ð¥+1 = 50 000 54ð¥+3. (52. 22)â2ð¥+1 = 50 000 54ð¥+3. 5â4ð¥+2. 2â4ð¥+2 = 50 000 55. 2â4ð¥. 22 = 50 000 2â4ð¥ = 22 â4ð¥ = 2 ð¥ = â 1/2 | ðž5â4ð¥+2 ðž2â4ð¥+2 ðžâ4ð¥ = 2 ðž answer |  (4) |
 |  |  |  |
1.5 | ð¥ = 2ðŠ âŠâŠâŠâŠâŠâŠâŠ..(1) ð¥2 + 2ð¥ â ðŠ â ðŠ2 = 36âŠâŠâŠ.(2) ð¥ = 2ðŠ sub into (2) (2ðŠ)2 + 2(2ðŠ) â ðŠ â ðŠ2 = 36 4ðŠ2 + 4ðŠ â ðŠ â ðŠ2 = 36 3ðŠ2 + 3ðŠ â 36 = 0 ðŠ2 + ðŠ â 12 = 0 (ðŠ â 3)(ðŠ + 4) = 0 ðŠ = 3  or ðŠ = â4 ð¥ = 6 or ð¥ = â8 | ðžsubstitution ðžstandard form ðž factors ðž y â values ðž x â values(5) | (5) |
 |  |  |  |
1.6 | ð¥2 â ðð¥ + ð â 1 = 0 â = ð2 â 4ðð â = (âð)2 â 4(1)(ð â 1) â = ð2 â 4ð + 4 â = (ð â 2)2 â ⥠0 roots are real and rational(perfect square) | ðžsubstitution ðž simplification ðž (ð â 2)2 ðž conclusion(4) | (4) |
 |  |  | [23] |
QUESTION 2 | |||
2.1.1 | ðð = 4ð â 1 483 = 4ð â 1 484 = 4ð ð = 121 121 terms in series | ðžÂ ðð = 4ð â 1 ðž equating 483 ðžÂ answer(3) |  (3) |
 |  |  |  |
2.1.2 | 121   â  (4ð â 1) ð=1 | ðž answer | (2) |
 |  |  |  |
2.2.1Â | (ð¡ â 3) â (2ð¡ â 4) = (8 â 2ð¡) â (ð¡ â 3) âð¡ + 1 = â3ð¡ + 11 2ð¡ = 10 ð¡ = 5 | ðž setting up equation ðž simplification ðž answer | (3) |
 |  |  |  |
2.2.2 | ⊠; ⊠; ⊠6 ; 2 ; â2 ; ⊠; ⊠; ⊠ð10 = 6       or       ðð = â4ð + 46 ð + 9ð = 6                            ð1 = â4(1) + 46 ð + 9(â4) = 6            ð1 = 42ð = 42 | ðž numerical values ofð10; ð11; ð12 ðž difference â4 ðžÂ a-value | (3) |
 |  |  |  |
2.3 | ðð2 + ðð3 = â4 ð + ð(2) = â1 | ðž setting of equations ðž common factor ðž ð = 2 ðž value of a ðž first three terms | (6) |
 |  |  | [17 |
 QUESTION 3   | |||
3.1 | 41 ; 43 ; 47 ; 53 ; 61 ; 71 ; 83 ; 97 ; 113 ; 131 | ðžÂ 2nd difference ðžÂ ð = 1 ðžÂ ð = â1 ðžÂ ð = 41 ðžÂ ðð = ð2 â ð + 41 | (5) |
 |  |  |  |
3.2 | ð41 = 412 â 41 + 41 Factors of 1681: 1 ; 41 and 1681 | ðž ð41 = 1681 ðžÂ factors ðž conclusion | (3) |
 |  |  |  |
3.3 | Consider the unit digits only 1 ; 3 ; 7 ; 3 ; 1 ; 1 ; 3 ; 7 ; 3 ; 1 ;Â groups of 5 49999998 = 9999999,6 Â Â Â 5 0,6Â Â ÃÂ Â 5 = 3 ð49999998 will end in 7 | Â ðž unit digits ðž groups of 5 ðž conclusion | (3) |
 |  |  | [11] |
QUESTION 4 | |||
4.1.1 | ðŽ = ð(1 + ð)ð ðŽ = 500 000 (1 +   7,2   )12ð                1200 ðŽ = 500 000(1.006)12ð | ðžsub into formula ðž 12ð |  (2) |
 |  |  |  |
4.1.2 | ðŽ = 500 000(1.006)12ð ðŽ = 500 000(1.006)12Ã5 ðŽ = ð 715894.21 | ðž ð = 60 ðžÂ answer | (2) |
 |  |  |  |
4.1.3 | ðŽ = ð(1 + ð)ð Will exceed R1 000 000 in 10 years. | ðžÂ setting up equation ðžÂ using logs ðžÂ conclusion | (3) |
 |  |  |  |
4.2.1 | ðV =  10 000 [1 â (1 + 15/1200 ) â36]              15/1200                ðð£ = ð 288 472,67 ððððð ðð¡/ð = ð 350 000 â ð 288 472,67 ððððð ðð¡/ð = ð 61 527,33 | ðž ð and ð ðžsub into ðð£ formula ðž ðð£ formuleÃŒ ðð£ = ð 288 472,67 ðž subtracting ðž answer | (5) |
 |  |  |  |
4.2.2 | 350 000   = ð¥ [1 â (1 + 18,5/1200 ) â60]                18,5/1200 ð¥ = ð 8 983,17 | ðž ð = 18,51200 ðžð = â60 ðž substitution ðž answer | (4) |
 |  |  | [16] |
QUESTION 5 | |||
5.1 | ðŽ(â3; 0) | ðž answer |  (1) |
 |  |  |  |
5.2 | ð(ð¥) = ð¥2 + 3ð¥ ð¥ = â ð     2ð ð¥ = â 3      2 ð (â 3) = (â 3)2 + 3 (â 3)     2     2        2 = â 9/4 ð (â 3 ; â 9)     2   4 | ðžð¥ = â 32  ðžsubstitution ðžanswer | (3) |
 |  |  |  |
5.3 | ð(â5) = 10    and ð(â3) = 0 ð =    10 â 0            â5 â (â3)ð = â5 | ðž calculating ð(â5) and ð(â3) ðžÂ substitution ðž ð-value | (3) |
 |  |  |  |
5.4 | ð¥ < â3 or / of ð¥ > 0 | ðžanswer |  (2) |
 |  |  |  |
5.5 | ð (â 3 ; â 9) Â or
| ðž answer ðž ð(ð¥ â 2) = ð¥2 â ð¥ â 2 ðž ð¥ = â 12 |  (2) |
 |  |  |  |
5.6 | ð¿ð = â 1/2 ð¥ + 2 â (ð¥2 + 3ð¥) OR ð¿ð = â 1/2 ð¥ + 2 â (ð¥2 + 3ð¥) ðŠ = â (â 7/4 ) 2 â 7/2 (â  7/4 ) + 2 OR ð¥ = â ð | ðž ð(ð¥) â ð(ð¥)   ðž ð(ð¥) â ð(ð¥)  ðžð(ð¥) â ð(ð¥) | (4) |
 |  |  | [15] |
QUESTION 6 | |||
6.1 | ðžÂ shape ðž y â intercept ðž point on graph | (3) | |
 |  |  |  |
6.2 | ð(ð¥) = 2ð¥ | ðž answer | (1) |
 |  |  |  |
6.3 | ââ1ð¥ = 2âðŠ âðŠÂ = log 𥠠   log 2 ðŠ = â log ð¥ / ðŠ = â log2 ð¥ /ðŠ = logÂœ 𥠠    log 2         | ðž interchange ð¥ and ðŠ ðž equation | (2) |
 |  |  |  |
6.4 | ðŠ ⥠0 ; ðŠ â ð |  | (1) |
 |  |  |  |
6.5 | See 7.2.1 | ðžðžshape and x-intercept     | (2) |
 |  |  |  |
 6.6 | log1 ð¥ = â321 â3(  )    = ð¥ 2ð¥ = 8âŽÂ   0 < 𥠆8 | ðžð¥ = 8 ðž0 < 𥠆8 | (2) |
 |  |  | [11] |
QUESTION 7 | |||
7.1 | ð = 5ð = 2 | ðžð = 5ðžð = 2 | (2) |
 |  |  |  |
7.2 | ðŠ = 5 â 𥠠  ð¥ â 2 ðŠ = â(ð¥ â 2) + 3      (ð¥ â 2) ðŠ =    3    â 1     ð¥ â 2 | ðžðŠ = 5â𥠠    ð¥â2  ðžðŠ = â(ð¥â2)+3        (ð¥â2) | (2) |
 |  |  |  |
7.3 | ðŽ(5; 0) ðŠ = ð¥ â 3 ð¥ = ðŠ + 3 ðŽâ²(0 + 3; 5 â 3) ðŽâ²(3; 2) | ðžð¥ = 3 ðžðŠ = 2 | (2) |
 |  |  | [6] |
 QUESTION 8  | |||
 8.1 | ð(ð¥) = â2ð¥2 + ð
| ðž formula ðž substitution of (ð¥ + â) ðž simplification to (â4ð¥â â 2â2) ðž common factor ðž answer |  (5) |
 |  |  |  |
8.2 | Â | (4) | |
 |  |  | [9] |
QUESTION 9 | |||
9.1 | ð(ð¥) = (ð¥ â 1)2(ð¥ + 3) ð(ð¥) = ð¥3 + ð¥2 â 5ð¥ + 3 ðâ²(ð¥) = 3ð¥2 + 2ð¥ â 5 3ð¥2 + 2ð¥ â 5 = 0 (3ð¥ + 5)(ð¥ â 1) = 0 ð¥ = â 5/3    or ð¥ = 1 ð(1) = 0 ð (â 5/3 ) = 256           27 | ðžÂ ð(ð¥) = ð¥3 + ð¥2 â 5ð¥ + 3 ðžÂ ðâ²(ð¥) = 0 ðž factors ðžÂ ð¥-values ðžÂ ðŠ-values | (5) |
 |  |  |  |
9.2 | ðž shape ðž ð¥ â intercepts ðž ðŠ â intercept ðžÂ stationary points | (4) | |
 |  |  |  |
9.3 | ðâ²â²(ð¥) = 6ð¥ + 2 6ð¥ + 2 = 0 ð¥ = â 1/3 ðŠ = 128 / 27 / 4,74 / 4 20/27 | ðž fâ²â²(ð¥) = 6ð¥ + 2 ðžð¥ = â 1/3 ðžÂ ðŠ = 128 / 27 / 4,74 / 4 20/27 | (3) |
 |  |  |  |
9.4 | 0 < ð < 25627 | ðžðžanswer | (2) |
 |  |  |  |
9.5 | ðâ²(ð¥) = 3ð¥2 + 2ð¥ â 5 3ð¥2 + 2ð¥ â 5 = â5 3ð¥2 + 2ð¥ = 0 ð¥(3ð¥ + 2) = 0 ð¥ = 0 or ð¥ = â 2/3 ð (â 2) = 175     3   27     y = â5ð¥ + ð 175 = â5 (â 2/3 ) + ð  27         3ð = 85   27 ðŠ = â5ð¥ + 85         27 | ðž fâ²(ð¥) = â5 ðž factors ðž ð¥ = â 2/3 ðž f (â 2/3) = 175            27 ðž substitution ðž answer | (6) |
 |  |  | [20] |
 | QUESTION 10 |  |  |
 10.1 | 243 = 2(ð¥ à 2ð¥) + 2(2ð¥ à â) + 2(ð¥ à â) 243 = 4ð¥2 + 4ð¥â + 2ð¥â 243 = 4ð¥2 + 6ð¥â â =   243 â 4ð¥2       6ð¥ â = 81 â 2𥠠  2ð¥Â     3 | ðž TSA equation and sub ðž simplification | (2) |
 |  |  |  |
10.2 | ð = 2ð¥ à ð¥ à (81 â 2ð¥)            (2ð¥Â  3) ð = 81ð¥ â 4 ð¥3        3 | ðžsub into volume formula | (1) |
 |  |  |  |
10.3 | ðð = 81 â 4ð¥2 ðð¥ 81 â 4ð¥2 = 0 ð¥2 = 81     4 ð¥ = 9 = 4.5    2 | ðž 81 â 4ð¥2 ðž 81 â 4ð¥2 = 0 ðž ð¥2 = 81       4 ðž answer    | (4) |
 |  |  | [7] |
 | QUESTION 11 |  |  |
11.1 | 9 Ã 9 Ã 9 Ã 5 Ã 4 = 14580 | ðž9 Ã 9 Ã 9 ðž5 Ã 4 ðž 14580 | Â (3) |
 |  |  |  |
11.2.1 |   12!  = 119750400   2! .2! | ðž 12! ðž2!.2! ðž 119750400 | (3) |
 |  |  |  |
11.2.2 |      10!                 2!          = 1 = 0,015 119750400     66 | ðž10!2! ðž 119750400 ðž answer | (3) |
 |  |  | [9] |
11.3.1 |  | ðž first branch with values ðžÂ top part of second branch with values ðžÂ bottom part of second branch with values |  (3) |
 |  |  |  |
11.3.2 | ð(ð¹) = 2       3 | ðžÂ ð(ð¹) = 2/3 | (1) |
 |  |  |  |
11.3.3 | ð(ð/ð») = 1 à 1         3    2 ð(ð/ð») = 1         6 | ðžÂ ð(ð/ð») = 1/6 | (2) |
 |  |  | [15] |
 |  |  | TOTAL: 150 |