PHYSICAL SCIENCES
GRADE 12
PAPER 1 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2017

GENERAL GUIDELINES
1. CALCULATIONS
1.1 Marks will be awarded for: correct formula, correct substitution, correct  answer with unit. 
1.2 No marks will be awarded if an incorrect or inappropriate formula is  used, even though there are many relevant symbols and applicable  substitutions. 
1.3 When an error is made during substitution into a correct formula, a mark  will be awarded for the correct formula and for the correct substitutions, but  no further marks will be given. 
1.4 If no formula is given, but all substitutions are correct, a candidate will  forfeit one mark. 
1.5 No penalisation if zero substitutions are omitted in calculations where  correct formula/principle is correctly given. 
1.6 Mathematical manipulations and change of subject of appropriate formulae  carry no marks, but if a candidate starts off with the correct formula and then  changes the subject of the formula incorrectly, marks will be awarded for the  formula and correct substitutions. The mark for the incorrect numerical  answer is forfeited. 
1.7 Marks are only awarded for a formula if a calculation has been attempted,  i.e. substitutions have been made or a numerical answer given. 
1.8 Marks can only be allocated for substitutions when values are substituted into  formulae and not when listed before a calculation starts. 
1.9 All calculations, when not specified in the question, must be done to a  minimum of two decimal places. 
1.10 If a final answer to a calculation is correct, full marks will not automatically be  awarded. Markers will always ensure that the correct/appropriate formula is  used and that workings, including substitutions, are correct. 
1.11 Questions where a series of calculations have to be made (e.g. a circuit  diagram question) do not necessarily always have to follow the same order.  FULL MARKS will be awarded provided it is a valid solution to the problem.  However, any calculation that will not bring the candidate closer to the  answer than the original data, will no count any marks. 

2. UNITS
2.1 Candidates will only be penalised once for the repeated use of an incorrect  unit within a question. 
2.2 Units are only required in the final answer to a calculation.
2.3 Marks are only awarded for an answer, and not for a unit per se. Candidates  will therefore forfeit the mark allocated for the answer in each of the following  situations: 

  • Correct answer + wrong unit 
  • Wrong answer + correct unit
  • Correct answer + no unit 

2.4 SI units must be used except in certain cases, e.g. V.m-1instead of N.C-1, and  cm•s-1 or km•h-1instead of m•s-1 where the question warrants this. 

3. GENERAL
3.1 If one answer or calculation is required, but two are given by the candidate,  only the first one will be marked, irrespective of which one is correct. If two  answers are required, only the first two will be marked, etc. 
3.2 For marking purposes, alternative symbols (s, u, t, etc.) will also be accepted. 
3.3 Separate compound units with a multiplication dot, no a full stop, for example,  m•s-1
For marking purposes, m•s-1 and m/s will also be accepted. 

4. POSITIVE MARKING
Positive marking regarding calculations will be followed in the following cases:
4.1 Subquestion to subquestion: When a certain variable is calculated in one  subquestion (e.g. 3.1) and needs to be substituted in another (3.2 of 3.3), e.g.  if the answer for 3.1 is incorrect and is substituted correctly in 3.2 or 3.3, full  marks are to be awarded for the subsequent subquestions. 
4.2 A multistep question in a subquestion: If the candidate has to calculate,  for example, current in die first step and gets it wrong due to a substitution  error, the mark for the substitution and the final answer will be forfeited. 

5. NEGATIVE MARKING
Normally an incorrect answer cannot be correctly motivated if based on a conceptual  mistake. If the candidate is therefore required to motivate in QUESTION 3.2 the  answer given in QUESTION 3.1, and 3.1 is incorrect, no marks can be awarded for  QUESTION 3.2. However, if the answer for e.g. 3.1 is based on a calculation, the  motivation for the incorrect answer could be considered.

MEMORANDUM 

QUESTION 1
MULTIPLE-CHOICE QUESTIONS
1.1 D ✓✓ (2)
1.2 D ✓✓ (2)
1.3 C ✓✓ (2)
1.4 B ✓✓ (2)
1.5 B ✓✓ (2)
1.6 D✓✓ (2)
1.7 A ✓✓ (2)
1.8 C ✓✓ (2)
1.9 C ✓✓ (2) 
1.10 A ✓✓ (2) [20]

QUESTION 2

2.1 

If the resultant/net force acts on an object, the object will accelerate in the direction  of the resultant/net force with an acceleration that is directly proportional to the  resultant/net force ✓ and inversely proportional to the mass ✓ of the object. 

(2)

2.2

 

✓ for both components

(5)

2.3 

2.3.1 

(For the vertical motion) 
Fnet = 0 ✓                       any one
FN + FAY +(- w) = 0
FN + FAY = w 
FN + FA.sin30° = 5 × 9,8 ✓ 
FN = 49 – (5 × 9,8 × sin 30°) 
FN = 24,5 N ✓

FAY is the vertical component of FA. 
FA = 5 N

(3)

2.3.2

fk = μk N ✓                    any one 
 fk = μk mg 
 fk = 0,2 × 24,5 ✓ 
 fk = 4,9 N ✓ 

(2)

2.3.3 

Positive marking from 2.3.1:
At 5 kg block B: 
Fnet = ma 
T + (-f) + (-FAX) = ma 
T = 5 × a ✓ 
T = 5a + 4,9 + 5 cos 30°✓.....(1)

At 12 kg block A 
W + (-T) = ma 
mg – T = 12 × a 
12 × 9,8 – T = 12 × a 
T = 117,6 – 12a ✓........ (2) 
                      (1) = (2):  
117,6 –12a = 5a + 4,9 + 5cos30°
117,6 – (4,9+5cos30°)=5a + 12a 
108,369873 = 17a 
 a = 6,37 m•s-2 ✓ 

(4)

      [16]

QUESTION 3

3.1 

Free-fall is the motion of an object when the only force acting on it is gravitational  force ✓✓ 

(2)

3.2 

3.2.1 

OPTION 1 
(downwards positive) 
vf = vi + a∆t ✓ 
0 = (-15) + (9,8)x ∆t ✓ 
∆t = 1,53 s✓

OPTION 2 
(upwards positive) 
vf = vi + a∆t ✓ 
0 = (15) + (-9,8)∆t ✓ 
∆t = 1,53 s✓ 

(3)

3.2.2 

OPTION 1
(downwards positive) 
vf = vi + a∆t ✓ 
 = (-15) + (9,8)(2,4) ✓ 
 = 8,52 
 vf = 8,52 m•s-1 ✓ 
 (downwards ) ✓

OPTION 2 
(upwards positive) 
vf = vi + a∆t ✓ 
 = (15) + (-9,8)(2,4) ✓ 
 = -8,52 
 vf = 8,52 m•s-1 ✓ 
 (downwards ) ✓

(4)

OPTION 3 
(downwards positive) 
Descent : Y – X:
∆t = 2,4 – 1,53 = 0,87 s  
vf = vi + a∆t ✓ 
 = 0 + (9,8)(0,87) ✓ 
 = 8,53 m•s-1 ✓ 
 (downwards ) ✓

OPTION 2
(upwards positive) 
Descent : Y – X:
∆t = 2,4 – 1,53 = 0,87 s  
vf = vi + a∆t ✓ 
 = 0 + (-9,8)(0,87) ✓ 
 = -8,53 m•s-1  
 = 8,53 m•s-1 ✓ 
 (downwards ) ✓ 

3.3 

OPTION 1 
(upwards positive)
A – Y: 
∆y = vi∆t + ½ a∆t2 ✓ 
 = 15 × 1,53 + 1/2(-9,8)(1,53)2✓ 
= 11,48 m ✓ 

Y – X: 
∆t = 2,4 – 1,53 = 0,87 s 
∆y = vi∆t + 1/2a∆t
 = 0 × 0,87 + 1/2(-9,8)(0,87)2✓ 
= -3,71 ✓ 
 = 3,71 m downwards/afwaarts Height of the building is given by:
h = 11,48 + 1,8 – 3,71  
 ∴h = 9,57 m ✓

OPTION 2
(downwards positive)
A – Y: 
 ∆y = vi∆t + ½ a∆t2 ✓ 
 = -15 × 1,53 + 1/2(9,8)(1,53)2 ✓ 
= -11,48 m ✓ 
 = 11,48 m upwards

Y – X: 
∆t = 2,4 – 1,53 = 0,87 s 
∆y = vi∆t + 1/2a∆t2 
 = 0 × 0,87 + 1/2(9,8)(0,87)2✓  = 3,71 m ✓ 
Height of the building is given by:
h = -11,48 – 1,8 +3,71 
 ∴h = -9,57 m 
 ∴h = 9,57 m ✓

 
 

OPTION 3 
(upwards positive)
(Y-X): 
vf = vi + a∆t  
-8,52 = (0) + (-9,8) ∆t  
 ∆t = 0,87 s ✓ 
(A-Roof): 
1,53 = ∆t + 0,87 
 ∆t = 0,66 s ✓ 
(A-X): 
vf2 = vi2 + 2a∆y ✓ 
(8,52)2 = (15)2 + 2(-9,8)∆y ✓ 
 ∆y = 7,78 m ✓ 
Height: h = 7,78 + 1,8  
 = 9,58 m ✓

OPTION 4 
(upwards positive)
(Y-X): 
 vf = vi + a∆t  
-8,52 = (0) + (-9,8) ∆t  
 ∆t = 0,87 s ✓ 
(A-Roof): 
1,53 = ∆t + 0,87 
∆t = 0,66 s ✓ 
(A-X): 
∆y = vi . ∆t + 1/2g∆t2✓ 
 = 15 × 0,66 +  1/2x – 9,8 × 0,662 ✓ 
= 7,77 m ✓ 
Height: h = 7,78 + 1,8  
 = 9,58 m ✓ 

(6)

3.4 

OPTION 1 
(downwards positive) 
Δt (s) 

OPTION 2
(upwards positive) 
Δt (s)

(3)

Criteria for graph 

Marks/

Initial velocity 

Final velocity 

Time at Y, maximum height

   

[18]

 

QUESTION 4

4.1 

In an isolated system ✓the total mechanical energy remains constant. ✓ ✓ 

(2)

4.2 

OPTION 1
 Emech at/by A = Emech at/by B ✓ Any one 
(mgh + 1/2mv2) at/by A = (mgh + 1/2mv2) at/by B
4 × 9,8 × (7 sin 60°) ✓+ 1/ × 4 × 0 = 4 x 9,8 × (4 sin 60°)✓+ 1/2  × 4 × v2 
v = 7,14 m•s-1

(4)

OPTION 2 
 Emech at/by A = Emech at/by B ✓ 
 (mgh + 1/2mv2) at A = (mgh + 1/2mv2) at B 
4 × 9,8 × (3 sin 60°) ✓+ 1/2× 4 × 0 = 4 × 9,8 × (0)✓+ 1/2× 4 × v v
= 7,14 m•s-1

4.3 

4.3.1 

Work done by a net force is equal✓ to the change in kinetic energy✓ of an object.
OR 
The net (total) work done ✓is equal to the change in kinetic energy of  the object. ✓ 

(2)

4.3.2

  

✓ for both components of weight ✓

(3)

 

4.3.3 

OPTION 1 
 Wnet = ∆ EK ✓ any one 
Wf + Wg// = 1/2m(v2f – v2i)   
f ∙ ∆x ∙ cosθ + mgsin 60 ∙ ∆x ∙ cosθ = 1/2× 4(32 – 7,142) ✓
f ×     2     ✓   × -1 + 4 × 9,8 sin 60 ✓ ×   2      × 1 = -83,9592 
    cos 60°                                            cos 60°
 -4f + 135,7927833 = -83,9592 
 f = 54,94 N ✓

 

OPTION 2 
 Wnc = ∆ Ep + ∆ E
 Wf = mghf -mghi + 1/2mv2f1/2m v2i ✓ any one
f ∙ cos θ ∙ ∆x = mg (hf –hi) + 1/2m (v2f – v2i)  
f ∙ cos 0 × 4 ✓ = 4 × 9,8 (0 – 4 sin 60°)✓ + 1/2× 4 (32 – 7,142)✓ 
f = 54,94 N ✓ 

(5)

4.4 

Remains the same ✓ 

(1)

    [17]

QUESTION 5

 

5.1 

The total linear momentum of an isolated system remains constant (is  conserved) ✓✓
OR 
Total linear momentum before a collision equals total linear momentum after a  collision in an isolated system. ✓✓  

(2)

5.2 

5.2.1 

OPTION 1 
∆y = v i ∆t + 1/2a ∆t2 ✓ 
0,32 = v i × 0,33 + 0 ✓ 
 Vi = 0,97 m•s-1

OPTION 2
∆y =  vi + vf   ∆t2 ✓ 
             2 
0,32 = 2v/ × 0,33 ✓ 
 V = 0,97 m•s-1 ✓ 

(3)

5.2.2 

Consider LEFT as positive 
∑pi = ∑p
(mc + mm)vi = mcvcf + mmvmf ✓ 
 0 ✓ = 2 × -0,97 + 0,005 × vmf ✓ 
 vfm = 392 m•s-1 east/right/forward ✓ 

(4)

5.3 

Impulse = Fnet .∆t = ∆p  
 = m(vf –vi) ✓            any one 
 = 2 (-0,4 – 0,97) ✓ 
 = - 2,74 N•s 
 = 2,97 N•s ✓ 

(3)

    [12]

QUESTION 6 

6.1 

Doppler effect ✓ 

(1)

6.2 

The number of waves reaching the detector per unit ✓ time decreases ✓. OR 
As the ambulance is moving away from the scene /detector, the wavelengths  become longer resulting in less waves reaching the detector ✓ per unit time ✓ hence the frequency decreases. 

(2)

6.3 

fL = v ± vL  fs ✓ 
      v ± vs                        any one 
fL =    v    fs 
      v+vs  
90% × 890 ✓ =    340✓    × 890 ✓ 
                          340+vs
 801 = 340 × 890 
             340+vs
 340 +vs = 340 × 890 
                        801 
 vs = 37,78 m•s-1 ✓ 

(5)

6.4 

Doppler flow meter is used to determine whether arteries are clogged /  narrowed ✓ OR to determine the rate of flow of blood ✓ 

(1)

6.5 

6.5.1 

The shift is to a longer wavelength, lower frequency, as the star is  moving away from the Earth. ✓ 

(1)

6.5.2 

A greater shift, therefore it shows that the distant star is moving away  at a greater speed than a nearby star. ✓✓ 

(2)

    [12]

QUESTION  7 

7.1 

The electrostatics force between the two charges is directly proportional the  product of the two charges and inversely proportional to the square of the  distance between them. ✓✓  

(2)

7.2 

Fj = kQJQL
            r2
FJ =(9 × 109)(3 × 10−6)(2 × 10−6
                    (0,2)2 
FJ = 1,35 N right  ✓ 

(4)

7.3 

7.3.1 

QL = -3 × 10-6 ✓ 

(1)

7.3.2 

OPTION 1
nē = Qf - Qi
           qē
nē = −a ×10−6−2×10−6 
              1,6×10−19 ✓ 
nē =  3,125 × 1013✓

OPTION 2 
nē = Qf - Qi
           qē
nē =−3 × 10−6 + 8 × 10−6 
              1,6 × 10−19 ✓ 
nē = 3,125 × 1013✓ 

(3)

7.3.3

 spider

(3)

Criteria for sketch /

Marks

Correct shape 

Correct direction 

Field lines not crossing each other  

7.4 

OPTION 1 
EJ = KQ ✓ = 9 × 109 × 3 × 10−6  = 1 875 000 N•C-1 West/Left
         r                   (0,12)2
EM = KQM =  9 × 109 × 3 × 10−6     = 4 218 750 N•C-1 West/Left 
             r               (0,08)2 ✓ 

Left positive :
ENET = EJ + EM✓ 
 ENET = (+1 875 000) + (+4 218 750) ✓(both substitutions)
ENET= 6 093 750 N•C-1 West/Left ✓

(6)

OPTION 2 
Enet = EJ + EM ✓ 
 = KQJ + KQM  ✓
    r          r       
✓ one of the two/ below 
= (9×109)× (3×10−6 + (9×109)× (3×10−6
            (0,12)2 ✓                     (0,08)
 = 6 093 750 N•C-1 West/Left ✓ 

  [19]

QUESTION  8 

8.1 

8.1.1 

V max ✓ OR/OF maximum voltage ✓ 

(1)

8.1.2 

Paverage = Vrms. Irms ✓ (Pgem = Vwgk . Iwgk ✓) 
 = (94,3) . (   3  × 94,3 )  = 133,39 W ✓ 
     (√2) ✓  (100     √2) ✓

(4)

8.1.3 

Replacing the slip rings with a split-ring commutator ✓✓ 

(2)

8.2 

8.2.1 

P =(Vrms)2  R✓ (P = Vwgk2/R ✓)  
 56✓ =902
           R
R = 144,64 Ω ✓ 

(4)

8.2.2 

Too bright ✓ 
The power of the generator is greater than the power of the light  bulb. ✓
OR The power of the light bulb is smaller than the power of  the generator. ✓ 

(2)

    [13] 

QUESTION 9

9.1 

Emf / Emk ✓ 

(1)

9.2 

9.2.1 

OPTION 1
Vlost =Ir ✓ 
 0,9 ✓= 4,5 × r ✓ 
 r = 0,2 Ω ✓

OPTION 2 
Emf (Emk) = I (R + r) ✓ 
22,14 =Vext + Ir 
22,14✓ = 21,24 + 4,5 × r ✓ 
 r = 0,2 Ω ✓ 

(4)

9.2.2 

OPTION 1 
V4Ω = IR4Ω  
 = 4,5 × 4 ✓ 
 = 18 V 
Vext = Vp + V4 ✓ 
21,24 = Vp + 18 ✓  
 Vp = 3,24 V ✓ 
Reff = 3,24 
           4,5✓ 
Reff = 0,72 Ω ✓

OPTION 2 
V4Ω = IR4Ω  
 = 4,5 × 4 ✓ 
 = 18 V 
Vext = Vp + V4Ω  
21,24 = Vp + 18 ✓  
 Vp = 3,24 V ✓ 
I4Ω = V = 3,24 = 0,81 A 
         R     4
I3Ω = V3,24  = 1,08 A 
         R     3
IR1 = IP − (I4Ω + I3Ω
IR1 = 4,5 – (0,81 + 1,08) 
 = 2,61 A ✓ 
R1 = 3,24  = 1,24 Ω ✓ 
        2,61
    1   =   1  +   +   1   = 1,39
 Reff       4      3       1,24
:.  Reff    = 0,72 Ω ✓ 

(6)

9.3 

Temperature ✓ 

(1)

9.5 

Increase ✓ 

(1)

    [13]

QUESTION 10

10.1 

Work function of a metal is a minimum energy needed by a metal in order to  release/ejects electrons from its surface. ✓✓ 

(2)

10.2 

W0 = hf0 ✓ 
 = (6,63 × 10-34) × (1,4 × 1015) ✓ 
 = 9,28 × 10-19J ✓ 

(3)

10.3 

10.3.1 

Remains the same  ✓ 

(1)

10.3.2 

Increase ✓ 

(1)

10.4 

Ek =1/2mv2 ✓ 
0,7 × 10-18 = 1/×  9,11 × 10−31 × v2✓ 
 v = √0,7 × 10−18 × 2 
          9,11 ×10−31 
 v = 1,24 × 106 m•s-1 ✓ 

(3)

    [10] 
    TOTAL: 150

 

Last modified on Monday, 26 July 2021 07:33