PHYSICAL SCIENCES: PHYSICS (PAPER 1)
GRADE 12
NOVEMBER 2017
MEMORANDUM

NATIONAL SENIOR CERTIFICATE

QUESTION 1
1.1 B ✓✓ (2)
1.2 D ✓✓ (2)
1.3 A ✓✓(2)
1.4 C✓✓ (2)
1.5 B✓✓ (2)
1.6 A✓✓ (2)
1.7 D✓✓ (2)
1.8 B✓✓ (2)
1.9 C✓✓ (2)
1.10 D✓✓ (2)
[20]

QUESTION 2 
2.1.1 An object continues in its state of rest or uniform motion (moving with constant velocity) unless it is acted upon by an unbalanced (resultant/net) force.✓✓
OR
A body will remain in its state of rest or motion at constant velocity unless a resultant/net force acts on it.✓✓
OR
A body will remain in its state of rest or of uniform motion in a straight line at constant velocity/speed unless a non-zero resultant/net force acts on it.✓✓ (2)
2.1.3
2.13

Accepted Labels 
 w Fg / Fw/weight/mg /78,4 N/gravitational force 
 F Fapp/FA / applied force (Accept T / tension) 
 fk (kinetic) Friction/Ff/f/(kineties) wrywing/Fw 
N FN/Normal (force)/Normaal(krag)/ 67,9 N

(4)
2.1.3

Fnet = ma ✓
Fnet = 0
F+(-fk) + (-Fgll) = ma
F- (fk + Fgll ) = ma
F - 20,37✓ - (8)(9,8)sin30o✓ = 0
F = 59,57 N ✓ (5) 

2.1.4

OPTION 1
Fnet = ma
(Fg|| - fk) = ma
(8)(9,8)sin30o - 20,37✓ = 8a ✓
∴magnitude: a = 2,35 m·s-2✓ 
OPTION 2
Fnet = ma
(Fg|| - fk) = ma
20,37 + [-(8)(9,8)sin30o]✓ = 8a ✓
∴a = -2,35 m·s-2
∴ magnitude: a = 2,35 m·s-2✓ 

(4)
2.2.1 Each body in the universe attracts every other body with a force that is directly proportional to the product of their masses ✓ and inversely proportional to the square of the distance between their centres. ✓
OR
Every particle in the universe attracts every other particle with a force along a line joining them. The force is directly proportional to the product of the masses ✓ of the particles and inversely proportional to the square of the distance between them. ✓ (2)
2.2.2

OPTION 1
g = GM
        r2
6 = (6,67 x 10-11)M
       (700 x 103)2
M = 4,41 x 1022 kg ✓ 
OPTION 2
F = Gm1m2
            r2
mg = GmM
            r2
(200)(6) = (6,67 x 10-11)(200)M
                       (700 x 10-3)2
M = 4,41 x 1022 kg ✓

(4)
[21]

QUESTION 3
3.1

OPTION 1
Upwards positive
vf = vi + aΔt✓
0 = (12) + (-9,8)(Δt) ✓
Δt = 1,22 s✓
Downwards positive
vf = vi + aΔt✓
0 = (-12) + (9,8)(Δt) ✓
Δt = 1,22 s✓
OPTION 2
Upwards positive
vf2 = vi2 + 2aΔy
0 = 122 + 2(-9,8)Δy✓
Δy = 7,35
Δy = viΔt + ½ aΔt2
7,35 =12Δt + ½ (-9,8)Δt2
Δt = 1,22 s✓
Downwards positive
vf2 = vi2 + 2aΔy
0 = (-12)2 + 2(9,8)Δy✓
Δy = -7,35
Δy = viΔt + ½ aΔt2
-7,35 = -12Δt + ½ (9,8) Δt2
Δt = 1,22 s✓

OPTION 3
Upwards positive
vf2 = vi2 + 2aΔy
0 = 122 + 2(-9,8)Δy✓
Δy = 7,35 m
3.1a

 

Downwards positive
vf2 = vi2 + 2aΔy
0 = 122 + 2(-9,8)Δy✓
Δy = -7,35 m
3.1a
OPTION 4
(E mech)A= (E mech)top
(½ mv2 + mgh)A = (½ mv2 + mgh)top
½m(12)2 + 0 = 0 + m(9,8)(h) ✓
∴h = Δy = 7,35 m
 3.1a
OR
Wnet = ΔEk
FnetΔycosθ = ½ m(vf2 – vi2)
m(9,8)Δycos 180o = ½ m(02 – (12)2)✓
Δy = 7,35 m
OR
ΔEp + ΔEk = 0
mg(hf – hi) + ½ m(vf2 – vi2) = 0
m(9,8)(h – 0) + ½(m)(0 - 122) = 0✓
∴h = Δy = 7,35 m
OPTION 5
Upwards positive
FnetΔt = m(vf - vi) ✓
mgΔt = m(vf - vi)
(-9,8)Δt = (0 – 12) ✓
Δt = 1,2245 s ✓
Downwards positive
FnetΔt = m(vf - vi) ✓
mgΔt = m(vf - vi)
(9,8)Δt = (0 – (-12)) ✓
Δt = 1,2245 s ✓
OPTION 6
Upwards positive
Δy = viΔt + ½ aΔt2 ✓
0 = 12Δt + ½ (-9,8)Δt2
Δt = 2,4490 s
Δt = ½ (2,4490)✓
= 1,2245 s ✓
Downwards positive
Δy = viΔt + ½ aΔt2 ✓
0 = -12Δt + ½ (9,8)Δt2
Δt = 2,4490 s
Δt = ½ (2,4490) ✓
= 1,2245 s ✓

(3)
3.2

OPTION 1
Upwards positive
vf = vi + aΔt✓
-3v = -v✓ + (-9,8)(1,22) ✓
v = 5,98 m∙s-1✓(5,978 – 6,03 m∙s-1
Downwards positive
vf = vi + aΔt✓
3v = v✓ + (9,8)(1,22) ✓
v = 5,98 m∙s-1✓(5,978 – 6,03 m∙s-1)
OPTION 2
Upwards positive
FnetΔt = m(vf - vi) ✓
mgΔt = m(vf – vi)
(-9,8)(1,2245)✓ = -3v – (-v)✓
v = 6,00 m∙s-1 ✓
Downwards positive
FnetΔt = m(vf - vi) ✓
mgΔt = m(vf – vi)
(9,8)(1,2245)✓ = 3v - v✓
v = 6,00 m∙s-1 ✓

(4)
3.3

OPTION 1
Upwards positive
Δy = viΔt + ½aΔt2
= (-5,98)(2,44) + ½(-9,8)(2,44)2
= - 43,764
∴h = 43,76 m✓ (43,764 – 44,08 m) 
Downwards positive
Δy = viΔt + ½aΔt2
= (5,98)(2,44) + ½(9,8)(2,44)2 ✓
= 43,764
∴h = 43,76 m✓(43,764 – 44,08) 
OPTION 2
Upwards positive
vf = vi + aΔt
vf = - 5,98 + (-9,8)(2,44)
vf = - 29,892 m·s-1
vf2 = v2 + 2aΔy
(-29,892)2 = (- 5,98)2 + 2(-9,8)Δy✓
Δy = - 43, 763 m
∴h = 43,76 m(43,764 – 44,08) 
Downwards positive
vf = vi + aΔt
vf = 5,98 + 9,8(2,44)
= 29,892 m·s-1
vf2 = v2 + 2aΔy
(-29,892)2 = (- 5,98)2 + 2(-9,8)Δy✓
Δy = - 43, 763 m
∴h = 43,76 m✓(43,764 – 44,08) 
OPTION 3
Upwards positive
vf = vi + aΔt
vf = - 5,98 + (-9,8)(2,44)
vf = - 29,892 m·s-1
3.3

Downwards positive
vf = vi + aΔt
vf = 5,98 + 9,8(2,44)
= 29,892 m·s-1
3.3

 

 

OPTION 4
Upwards positive
For A
vf = vi + aΔt
-12 = 12 + (-9,8)Δt
Δt = 2,45 s
For B
Δx = viΔt + ½ aΔt2 ✓
= (-5,98)(2,45) + ½ (-9,8)(2,45)2 ✓
= - 44,06 m
h = 44,06 m ✓
Downwards positive
For A
vf = vi + aΔt
12 = -12 + (9,8)Δt
Δt = 2,45 s
For B
Δx = viΔt + ½ aΔt2 ✓
= (5,98)(2,45) + ½ (9,8)(2,45)2 ✓
= 44,06 m
h = 44,06 m ✓
(3)
OPTION 5
Upwards positive
Δy = viΔt + ½aΔt2 ✓
ΔyA = 12Δt + ½ aΔt2
ΔyB = -6Δt + ½ aΔt2
ΔyA – ΔyB = 12Δt – (-6Δt)
0 – ΔyB = 18Δt ✓
= 18(2,44)
= 43,92 m
h = 43,92 m ✓
Downwards positive
Δy = viΔt + ½aΔt2 ✓
ΔyA = -12Δt + ½ aΔt2
ΔyB = 6Δt + ½ aΔt2
ΔyA – ΔyB = 12Δt – (-6Δt)
0 – ΔyB = -18Δt ✓
= -18(2,44)
= 43,92 m
h = 43,92 m ✓
(3)
OPTION 6
Upwards positive
Wnet = ΔEk ✓
mgΔycosθ = ½ m(vf2 – vi2)
(-9,8)hcos0o = ½ (-20)2 – ½ (-6)2
h = 44,082 m ✓
Downwards positive
Wnet = ΔEk ✓
mgΔycosθ = ½ m(vf2 – vi2)
(9,8)hcos0o = ½ (20)2 – ½ (6)2 ✓
h = 44,082 m ✓

OPTION 7
(Ep + Ek)top = (Ep + Ek)bottom
mghi + ½ mvi2 = mghf + ½ mvf2
(9,8)h + ½ (6)2 = (9,8)(0) + ½ (30)2 ✓
h = 44,082 m ✓
(3)

3.4 UPWARDS AS POSITIVE
3.4
DOWNWARDS AS POSITIVE
3.4b

Criteria for graph  Marks 
Time 1,22 s shown correctly   ✓
Initial velocity for stone B at time t = 0 correctly shown with correct signs   ✓
Two sloping parallel lines with A crossing the time axis   ✓
Straight line graph for A parallel to graph B, extending beyond the time when B hits the ground  ✓

(4)
[14]

QUESTION 4 
4.1 The total linear momentum in an isolated/closed system is constant.✓✓
OR
In an isolated/closed system, total linear momentum before collision is equal to total linear momentum after collision. ✓✓ (2)
4.2 Σpi = Σpf ✓
mBvBi + mbvbi = mBvBf + mbvbf
Δpbullet = -Δpblock
(0,015)(400)✓ + 0 = (0,015)vBf + 2(0,7)✓
VBf = 306,67 (306,666)m∙s-1✓ (4)
4.3

OPTION 1
FnetΔt = Δp
Δp = mvf - mvi

For bullet 
Δp = (0,015)(306,666 – 400)✓
= -1,4 kg∙m∙s-1
Fnet(0,002) = -1,4
Fnet = -700 N

For block 
Δp = (2)(0,7 - 0)✓
= 1,4 kg∙m∙s-1
Fnet(0,002) = 1,4
Fnet = 700 N

Wnet = ΔEk
FnetΔxcosθ = ½ m(vf2 – vi2)
(700)Δxcos180o ✓= ½ (0,015)(306,672 – 4002)✓
Δx = 0,71 m ✓  

Fnet = ma
-700 = (0,015)a
OR
Fmet = ma
700 = (0,015)a
a = - 46 666,67
or 46 665 m·s-2 
Δx = viΔt + ½ aΔt2
= (400)(0,002) + ½(-46 666,67)(0,002)2
= 0,71 m (0,70667) m✓ 
OR
vf2 = vi2 + 2aΔx
(306, 67)2 ✓= (400)2 + 2(-46 666,67)Δx✓
Δx = 0,71 m (0,70667 m) ✓
OPTION 2
vf = vi + aΔt✓
306,666 = 400 + a (0,002) ✓
a = -46 667 m·s-2
vf 2 = vi 2 + 2aΔx
(306,666)2 ✓= 4002 + 2(-4667) Δx✓
Δx = 0,71 m (0,706 m) ✓ 
OPTION 3  
4.3
OPTION 4
Wnet = ΔK/ΔEk ✓
FnetΔxcos θ = maΔxcosθ = ΔK/ΔEk
vf = vi + aΔt
306,666 = 400 + a (0,002) ✓
a = -46 667 m·s-2  
Wnet = ΔK/ΔEk
FnetΔxcos θ = maΔxcosθ = ΔK/ΔEk
(0,015)(46 667)Δxcos180o✓ = ½(0,015)(306,6662 – 4002)✓
Δx = 0,71 m (0,707) ✓
OR
Wnc = ΔEp + ΔEk
(0,015)(46 667)Δxcos180o✓ = ½(0,015)(306,6662 – 4002)✓
Δx = 0,71 m (0,707) ✓

(5)
[11]

QUESTION 5
5.1 The net/total work done (on an object) is equal to the change in the object's kinetic energy.✓✓
OR
The work done on an object by a resultant/net force is equal to the change in the object's kinetic energy.✓✓(2)
5.2

Accepted labels  
 w Fg / Fw / weight / mg/ 58,8N / gravitational force / Fearth on block 
 T FT/ Tension/ spannin 

5.3

Ww = wΔxcosθ✓
= mgΔxcosθ
= (6)(9,8)(1,6)cos0o✓
∴W = 94,08 J ✓
Ww = - ΔEP ✓
= - mg(hf – hi)
= - (6)(9,8)(0 – 1,6) ✓
= 94,08 J✓

(3)
5.4

OPTION 1
Wnet = ΔEK /ΔK✓ = ½m(vf2 – vi2)
Wnet = FnetΔxcosθ
Wnet = Wf + Wg + WN
= μkNΔxcosθ + Wg + WN
Wnet = (0,4)(4)(9,8)(1,6)cos180o ✓ + 94,08 + 0
= 68,992 J
Wnet = ½m(vf2 – vi2)
68,992✓= ½(4)(vf2 – 0) + ½(6)(vf2 – 0)✓
vf = 3,71 m∙s-1✓ 
OPTION 2
Wnc = ΔEp + ΔEk ✓
fΔxcosθ = (m1ghf – m1ghi) + (½m1vf2 - ½m1vi2) + (½m2vf2 - ½m2vi2)
(0,4)(4)(9,8) (1,6) cos 180o ✓= [0 - (6)(9,8)(1,6)]✓+ (½(6)vf2 + ½(4)vf2 - 0)✓
68,992 = 5vf2
vf = 3,71 m∙s-1
OPTION 3
fk = μkN = (0,4)(4)(9,8) = 15,68 N
T – fk = ma
w – T = ma
T – 15,68 = 4a … .(i)
(6)(9,8) – T = 6a ……..(ii)
∴a = 4,312 m·s-2
∴T = 32,928 N 
Fnet = ma
= (6)(4,312)
= 25,872
Wnet = FnetΔxcosθ
= (25,872)(1,6)cos0o✓
= 41,3952 J
Wnet = ΔEk
41,3952 = ½ m(vf2 – vi2
41,3952 = ½ (6)(vf2 – 0)✓
vf = 3,7146 m∙s-1
Above calculations can be done with 4 kg or 10 kg 
4 kg block
Wnet = ΔEK /ΔK✓
Wf + WT = ½m(vf2 – vi2)
fΔxcos180o + TΔxcos0o = ½(4)(vf2 – 0)
(15,68)(1,6)(-1)✓ + (32,928)(1,6)(1)✓ = 2vf2
vf = 3,72 m·s-1
6 kg block
Wnet = ΔEK /Δ K✓
Ww + WT = ½m(vf2 – vi2)
mgΔxcos0o + TΔxcos180o = ½(6)(vf2 – 0)
(6)(9,8)(1,6)(1)✓+ (32,928)(1,6)(-1)✓= 3vf2
vf = 3,72 m·s-1
OPTION 4
Wnet = ΔEK /ΔK ✓
For the 4 kg mass 
T(1,6)cos0o + [(0,4)(9,8)(4)](1,6)cos180o✓= ½(4)v2 – 0)
For the 6 kg mass
(6)(9,8)(1,6)]cos0o+ T(1,6)cos180o✓ = ½(6)(v2 – 0)
Adding the two equations / Optel van twee vergelykings
68,992 = ½ (4)v2 + ½ (6)v2 ✓
5v2 = 68,992
v = 3,71 m·s-1
OPTION 5
Wnet = ΔEk ✓
Fnet Δxcosθ = ½ m(vf2 –vi2)
(Fg – f)Δxcosθ = ½m(vf2 –vi2)
[(6)(9,8) – (0,4)(4)(9,8)]✓(1,6)cos0o ✓= ½(10)(vf2 - 0)✓
vf = 3,71m.s-1 ✓

(5)
[12]

QUESTION 6 
6.1 It is the (apparent) change in frequency (or pitch) of the sound (detected by a listener) ✓because the sound source and the listener have different velocities relative to the medium of sound propagation. ✓
OR
An (apparent) change in (observed/detected) frequency (pitch), (wavelength)✓ as a result of the relative motion between a source and an observer ✓ (listener). (2)
6.2.1 170 Hz✓ (1)
6.2.2 130 Hz✓ (1)
6.3 

POSITIVE MARKING FROM QUESTIONS 6.2.1 and 6.2.2
6.3

(6)
[10]

QUESTION 7 
7.1 The magnitude of the electrostatic force exerted by one point charge on another point charge is directly proportional to the product of the (magnitudes of the) charges✓and inversely proportional to the square of the distance (r) between them. ✓
OR
The force of attraction or repulsion between two point charges is directly proportional to the product of the charges ✓ and inversely proportional to the square of the distance between them. ✓ (2)
7.2

OPTION 1
F = k Q1Q2
            r2
= (9x109((6x10-6)(8x10-6)
                (0,2)2
= 10,8 N✓
OPTION 2
E = kQ(9x109((6x10-6)(8x10-6) = 1,8 x 104 N-C-1
       r2                  (0,2)2 
F = Eq = (1,8 x 104)(6 x 10-6)✓ = 10,8 N✓ (4) 

7.37.3(3)
7.4

OPTION 1
Fnet2 = FXY+ FZY2
15,202 = 10,82 + Fzy2
FZY = 10,696 N
FZY =k QZQY
              r2
10,696✓ = 9 x 1098 x 10-6 x QZ
                                     (0,30)2
QZ = 1,34 x 10-5 C✓ 
OPTION 2
cosθ = 10,8
            15,2
θ = 44,72o
sin 44,72 = FZY ✓ OR tan 44,72 = FZY
                  15,2                              FXY
FZY = 10,696 N
FZY =k QZQY
              r2
10,696✓ = 9 x 1098 x 10-6 x QZ
                                     (0,30)2
QZ = 1,34 x 10-5 C✓
7.4

(4)
[13]

QUESTION 8
8.1 Electric field at a point is the force per unit positive charge placed at that point. ✓✓(2)
8.2 E = kQ✓
             r2
Enet = (EA + EB)
= 9 x 109 (1,5 x 10-6)  + 9 x 109 (2,0 x 10-6)
                   (0,4)2                            (0,3)2
= 2,84 x 105 N∙C-1 ✓ (4)
8.3

OPTION 1
FE = qE ✓
= (3,0 x 10-9)( 2,84 x 105) ✓
= 8,52 x 10-4 N ✓ 
OPTION 2
F=k Q1Q2
         r2
Fnet = (FA + FB)
(3) 

[9]

QUESTION 9
9.1.1 The potential difference (voltage) across a conductor is directly proportional to the current in the conductor at constant temperature. ✓✓
OR
The current in a conductor is directly proportional to the potential difference (voltage) across the conductor if temperature is constant✓✓ (2)
9.1.2 (Equivalent) resistance✓ (1)
9.1.3 Gradient = ΔV
                           Δl
=   2-0   = 4 (Ω)✓
   0,5-0
(2)
9.1.4 OPTION 1
9.14
OPTION 2
For graph X:
9.14b

(4)
9.2.1 I = 
               R
   5   
(RM + RN)

   (6)
= 0,83 A✓ (3)
9.2.2

OPTION 1
Ɛ = I(R + r) ✓
= 0,83[(6 +1,5) ✓+ 0,9✓]
= 6,997 V
= 7(,00) V✓ (6,972 – 7,00 V) 
OPTION 2
Ɛ = (Vs + V// + Vr )✓ / Vext + Vint
= [5 + (0,833 x 1,5) ✓+ (0,9 x 0,833)] ✓
= 6,999 V
= 7(,00) V✓ (6,972 – 7,00 V) 

9.2.3 The resistance RN will be 3 Ω ✓
The voltage divides (proportionately) in a series circuit. Since the voltage across M is half the total voltage, it means the resistances of M and N are equal.✓(2)
[18]

QUESTION 10
10.1
10.1.1 Mechanical to electrical ✓ (1)
10.1.2
10.12

Criteria for graph  Marks 
Correct DC shape, starting from zero   ✓
Positions ABCDA correctly indicated on the graph   ✓

(2)
10.2.1 20,5 Ω✓ (1)
10.2.2

OPTION 1
Irms = Vrms = 25 
            R       20,5
= 1,22 (1,2195) A   
Pave = Irms2R
=(1,22)2(0,5)
= 0,74 W
PaveVrms2
               R
Pave =  (25  )2
            20,5
Pave = 30,49 W
Actual energy delivered per second(power)
= (30,49– 0,74)
= 29,75 W✓
Pave = Irms2 R✓
= (1,22)2(20) ✓
= 29,77 W✓
OR
Vrms device = 20 × 25= 24,39 V
                     20,5
Pave = VrmsIrms ✓
= (24,39)(1,22)
= 29,76 W ✓
W = I2rms RΔt
= (1,22)2 (0,5)(1)
= 0,74 J
PaveVrms2
               R
Pave =  (25  )2
            20,5
Pave = 30,49 W
Actual energy delivered per second(power)
= (30,49– 0,74)
= 29,75 W✓
OPTION 2
Vrms device = 20 × 25= 24,39 V
                     20,5
PaveVrms2 = (24,9) 2 = 29,76 W ✓
               R          20

(5)
[9]

QUESTION 11
11.1.1 (Line) emission (spectrum) ✓ (1)
11.1.2 (Line) absorption (spectrum )(1)
11.2.1 Emission ✓(1)
11.2.2

Energy released in the transition from E4 to E2 = E4 – E2
E4 – E2 = (2,044 x 10-18 – 1,635 x 10-18)✓ = 4,09 x 10-19J
E = hf✓
4,09 x 10-19 = (6,63 x 10-34)f✓
f = 6,17 x 1014 Hz✓
(4) 

11.2.3

E = W0 + Ek(max)
hf = hf0 + Ek(max)
hf = hf0 + ½ mv2max
E = W0 + ½ mv2max
4,09 x 10-19 ✓ = (6,63 x 10-34)(4,4 x 1014)✓ + Ek(max)
Ek(max) = 1,17 x 10-19 J✓
OR
Ek(max) = Elight – Wo
= hflight – hfo
= (6,63 x 10-34)( 6,17 x1014) ✓- (6,63 x 10-34)(4,4 x 1014)✓
= 1,17 x 10-19 J ✓ (4) 

11.2.4 No✓
The threshold frequency is greater than the frequency of the photon.✓
OR
The frequency of the photon is less than the threshold frequency✓
OR
Energy of the photon is less than the work function of the metal✓ (2)
[13]

TOTAL: 150

Last modified on Monday, 16 August 2021 13:13