MATHEMATICS PAPER 2
GRADE 12
NATIONAL SENIOR CERTIFICATE
JUNE 2018
MEMORANDUM

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
  • Consistent accuracy applies in ALL aspects of the marking guideline.
  • Assuming answers/ values in order to solve a problem is NOT acceptable.
GEOMETRY  
 S A mark for a correct statement.
(A statement mark is independent of a reason.) 
 R A mark for a correct reason.
(A reason mark may only be awarded if the statement is correct.) 
 S/R Award a mark if statement and reason are both correct.


QUESTION 1

1.1  1
Answer only full marks 
619
41,27
(2)
1.2  σ = 10,63  Answer (2)
1.3   41,27 10,63 41,27 10,63
30,64 51,90
∴ 8 learners 
both c.vs 
 notation
 8 learners
(3)
1.4  Q1 29
Q3 49
∴ Semi - IQR/IKW 49 - 29
                            2
= 10 
 Q1
 Q3
 answer(3)
    [10]

 

QUESTION 2

2.1

56 + 2 y = 64
2 y = 8            Answer only 1 mark
y = 4

✓    correct equation
✓    y-value
(2)

2.2

Time (in minutes)

Frequency 

Cumulative frequency

✓    8, 12 and 28
✓    43, 60 and 64
(2)

5 ≤ t <10

3

3

10 ≤  t < 15

5

8

15 ≤  t < 20

4

12

20 ≤  t < 25

16

28

25 ≤  t < 30

15

43

30 ≤  t < 35

17

60

35 ≤  t < 40

4

64

2.3 2 ✓    grounding
✓    plotting against the upper limit
✓    shape 
(3)
2.4 Number of learners = 64 - 54 = 10
Accept [9 -11]
✓    method
✓    54
✓    answer
(3)
    [10]

QUESTION 3

 3

3.1

x + py = p
y = - x  + 1
        p
∴ A(0;1)

✓     y-subject of formula
✓    coordinates of A
(2)

3.2

OA = 1

∴ OC = 4(1) = 4
∴ C (4; 0)
mAC- 1   = 1 - 0
            p       0 - 4
p = 4

✓     OC
✓    - 11 - 0
        p     0 - 4
✓ simplification
✓     p-value
(4)

3.3

mEB = 4    EB ⊥ AC
y = 4x - 7½

✓      mEB = 4
✓     equation
(2)

3.4

- x + 1 = 4x - 7½
  4
-x + 4 = 16x - 30
17x = 34
x = 2
y = ½

✓    equating 
✓    simplification
✓    x-value
✓    y-value

(4)

3.5

4x - 7½ = 0
4x = 15
         2
x 15
       8
4

✓    y = 0
✓    x-value
3.6  5 ✓    substitution
✓    BF

✓    BC
✓    substitution
✓  answer

✓    substitution
✓    BF

✓    OF
✓    substitution
✓  answer
(5)
3.7

r 17
     16

✓    answer
(1)
3.8  6

✓     r 2
✓    equation
(2)

    [22]

QUESTION 4

 7

4.1

x 2 + 6x + 9 + y 2 - 8 y + 16 = -5 + 9 + 16
(x + 3)2  + (y - 4)2   = 26
∴ M(- 3; 4)

completing the square
✓     x-value
✓     y-value
(3)

4.2

r = √26

✓     answer
(1)

4.3

mAS = 5    [SA ⊥ QB]
y - 4 = 5(x + 3)
y = 5x + 19

✓      mAS = 5
✓     subst.. mAS &(- 3; 4)
✓     equation
(3)

4.4

x 2 + 6x + 9 + (5x + 19 - 4)2   = 26
x 2 + 6x + 9 + 25x 2 + 150x + 225 - 26 = 0
26x 2 + 156x + 208 = 0
x 2 + 6x + 8 = 0
(x + 4)(x + 2) = 0
x = -4  or  x s -2
∴ y = 5(-4) + 19
= -1
Q(- 4; - 1)

✓     substitution
✓     simplification

✓    standard form
✓    factors
✓    choosing correct
✓    y-value
(6)

4.5

-1 = - 1/5 (- 4)+ k
∴ k = - 9/5

✓     substitute (- 4; -1)
✓     answer
(2)

4.6

tanθ = - 1/5
∴ θ = 1690
OQP = 110 [∠s on a str line] 
∴ OQP = ORC
∴ RCPQisa cyclic quad [converse∠s same seg]

tanθ = - 1/5

✓     size of θ 
✓     size of OQP
✓     R

(4)
    [19]

 

QUESTION 5

5.1.1

 8 ✓     sin 270 = t/2
✓      x =  √4 - t2
✓      2 sin 270 cos 270
✓    substitution
 (4)

5.1.2

tan 5130.cos 270 = (- tan 270) cos 270
= - sin 27º .cos 270
     cos 270
= - t/2

✓      (- tan 270 )
✓      - sin 270
         cos 270
✓    - t/2

5.1.3

cos 870 = cos(600 + 270 )
= cos 600.cos 270 - sin 600.sin 270
= ½ . √4 - t 2 - √3t/2
            2          2
√4 - t 2 - t 3
            4

✓    600 + 270
✓    expansion 
✓    subst 4 - 2 & t/2
                    2

✓    subst. ½ & 3/2

5.2

        sin(- 2a )cos(900 + a )     
sin(- a + 3600 ).cos(- a -1800 )

(- sin 2a )(- sin a )
     (sin a )(- cos a )

= - 2 sin a cos a
           cos a
= -2 sin a

✓      (- sin 2a )
✓      (- sin a )
✓     sin a
✓      (- cos a )
✓      2 sina cos a
✓      - 2sin a
(6)

5.3

9 sin2x - 4 cos2x = 0
(3sin x - 2 cos x)(3sin x + 2 cos x) = 0
∴ 3sin x =± 2 cos x
tan x 2
              3
x = 33, 690 +1800.k or x = 146, 310 +1800.k k ∈ Z

✓     factors
✓     both equations
✓      tan x = ± 2
                       3
✓    both 33,690 &146,310 /- 33,690
✓     1800.k & k ∈ Z    (5)

    [22]

Related Items

QUESTION 6

6.1

Amplitude= 2

✓ answer(1)

6.2

1 ≤ y ≤ 5

✓  min & max
✓ notation(2)

6.3

 9

✓    both x- intercepts - 300 &1500
✓    max TP & y- intercept
✓    shape (3)

6.4

- 300 < x < 00

✓  both c.v.s
✓ notation(2)

6.5

h(x) = sin(x + 900) - 2
= cos x - 2

✓✓ sin(x + 900) - 2 
✓ cos x(3)

   [11]

 

QUESTION 7
10

7.1

Aˆ = 900 - 2θ

✓    answer (1)

7.2

sinθ  = DB
           DC

✓    answer
(1)

7.3

DC =  DB 
         sin θ

and AD = 2DB = 2DB

        DC         =  AD    in ΔADC
sin(900 - 2θ )    sin θ

  DB  
  sin θ  = 2DB
cos 2θ    sin θ

       DB         = 2DB
sin θ.cos 2θ     sin θ

DB.sin θ = 2DB.sin θ.cos 2θ
2 cos 2θ = 1
2 cos 2θ - 1 = 0

✓    AD = 2DB
✓    sine rule ∆ADC
✓    subst. in sine rule

✓    cos2θ
✓   
equation
(5)

   

[7]


QUESTION 8

8.1

Perpendicular to the chord

✓    answer
(1)

8.2

 11

8.2.1

OM = 2x + 3 - 3
             2
OR
OM = 2x - 3
             2

✓    answer
OR
✓    answer
(1)

8.2.2

 12

✓    susbt. in Pyth
✓    simplification
✓    standard form linear equation
✓    x-value (4)

 8.2.3

DM = 12
DQ = √122 + 62
= √180
= 6√5

✓  DM
✓  subst. in Pyth
✓ answer
(3)

    [9]


QUESTION 9

 13

9.1

Aˆ  = x  [ ∠ at centre = 2∠at circumf.]

✓ S ✓R

 

Cˆ 2  = x  [ ∠s opp.=sides]

✓ S ✓R

 

Bˆ1  = x   [ tan chord theorem]

✓ S ✓R

 

Tˆ = x [corresp.∠s, : TF II BC]

✓ S ✓R

(8)

9.2

Tˆ  = Aˆ = x
∴ ATBE is a cyclic quad [ converse ∠s same segment]

✓    S
✓    R

(2)

   

[10]


QUESTION 10
14

10.1

Contruction:Join BN and height from N ⊥ AM and CM and height from M ⊥ AN
Area ΔAMN =½ x AM x h   [same height]
Area ΔBMN   ½ x BM x h

= AM
   BM

Area ΔAMN =½ x AN x k   [same height]
Area ΔCMN   ½ x NC x k

= AN 
   NC

Area ΔBMN Area ΔCMN  [same height, same base MN||BC]

= AM = AN
   BM    NC

✓ constr 
 S ✓ R
 S
 R
(5)
10.2.1

15
ND
= 2  [given]
 x      1
ND = 2and
NE =  [prop theorem DE II KM or] line drawn to oneside of a Δ
 y      1

∴ NE = 2y
KM2 = KN2 + MN2 [Pyth theorem]
= (3x)2  + (3y)2
= 9x2 + 9 y2

✓  S ✓R
✓  subst in Pyth theo
✓  simplification(4)

10.2.2

DM2 = DN2 + M N2  [Pyth]
= (2x)2  + (3y)2
KE2 = KN2 + NE2   [Pyth]
= (3x)2  + (2 y)2
DM2 + KE2 = 4x2 + 9 y2 + 9x2 + 4 y2
= 13(x2 + y2 )
DM2 + KE213(x2 + y2 )
    KM2            9(x2 + y2 )
13
    9

✓  subst in Pyth
✓  subst in Pyth
✓  value of DM2 + KE2
 13(x2 + y2 )  
 9(x2 + y2 ) ✓

(4)

   

[13]


QUESTION 11
16

11.1

A1  = B1 [alt ∠s, AC II DB] 
A3  = B1 [tan chord] 
∴ A1  = A3
T2  = ACB [ext ∠of a cyclic quad]
D2  = B2 [3rd ∠s] 

S/R
✓S✓R
✓S✓R
✓S

 

OR
A1  = B1 [alt 3s, AC || DB]
A3  = B1 [tan chord]
∴ A1  = A3
T2  = ACB [ext ∠of a cyclic quad]
∴ ΔABC|||ΔADT [∠∠∠]

OR
✓ S/R
✓S
✓S ✓R
✓R ✓R
(6)

11.2

4  = Tˆ1           [vert opp∠s]
1  = Tˆ4      [∠sin same seg]
A1 = Aˆ3       [proven] 
∴ T1  = A3
∴ PT is a tangent to circle ADT[converse tan chord]

✓  S/R
✓  S   ✓R
✓R
(4)

11.3

3  = Tˆ1     [proven]
Pˆ = Pˆ    [common]
PTA = Dˆ1  [3rd ∠s]
Δ APT|||Δ TPD   [∠∠∠]

✓S
✓S
✓R

 

OR
3  = Tˆ1  [proven]
Pˆ= Pˆ    [common]
PTA = D [3rd ∠s]

✓S
✓S
✓S
(3)
11.4

AP = PT       [||| Δs]
TP    PD
AP.PD = PT2
AP(AP - AD) = PT2
AP(AP - 2/3AP) = PT2
AP. AP = PT2
       3
AP2 = 3PT2

✓  S/R
✓  simplification
✓   PD i.t.o AP and AD
✓   subst in AD
(4)

 

 

[17]

TOTAL:150

Last modified on Thursday, 12 August 2021 07:20