MECHANICAL TECHNOLOGY
GRADE 12
NSC PAST PAPERS AND MEMOS
FEBRUARY/MARCH 2018

MEMORANDUM

QUESTION 1: MULTIPLE-CHOICE QUESTIONS 
1.1 C ✔ (1)
1.2 C ✔ (1)
1.3 B ✔ (1)
1.4 D ✔ (1)
1.5 C ✔ (1)
1.6 D ✔ (1)
1.7 A ✔ (1)
1.8 A ✔ (1)
1.9 A ✔ (1)
1.10 B ✔ (1)
1.11 A ✔ (1)
1.12 C ✔ (1)
1.13 B ✔ (1)
1.14 A ✔ (1)
1.15 D ✔ (1)
1.16 A ✔ (1)
1.17 C ✔ (1)
1.18 A ✔ (1)
1.19 B ✔ (1) 
1.20 A ✔ (1) [20]

QUESTION 2: SAFETY 
2.1 Spring tester 

  • Use correct attachments of the valve spring tester to compress   the spring. ✔
  • Do not exceed the prescribed pressure. ✔
  • Ensure that the spring does not slip out. ✔
    (ANY 2 x 1) (2) 

2.2 Welding helmet 

  • To protect your eyes against the dangerous ultra-violet rays. ✔
  • To protect your skin against the dangerous ultra-violet rays. ✔
  • To protect your eyes against the sparks. ✔
  • To protect your skin against the sparks. ✔
    (ANY 1 x 1) (1) 

2.3 Spot welding  

  • To prevent the electrodes from overheating. ✔ (1)

2.4 Testers  
2.4.1 Brinell tester 

  • The tester must be mounted on the rigid spot on a workbench ✔
  • The force must be applied at an angle of 90° to the test piece  ✔
  • Do not exceed the prescribed load ✔
  • Make sure the test piece is placed securely into position ✔ 
    (ANY 1 x 1) (1) 

2.4.2 Tensile tester 

  • Make sure all safety guards are in place ✔
  • Do not exceed the prescribed load ✔
  • See that the test piece is securely placed in position ✔
  • Make sure the dial indicator is mounted properly ✔
    (ANY 1 x 1) (1) 

2.4.3 Torsion tester 

  • Fasten the tester to the workbench ✔
  • When you add pieces of different mass, you should attach  them very gently otherwise you could get a skew reading of  the torsion on the rod ✔
  • Get specification (torsion) of the different materials and of the  size rods you would like test ✔
    (ANY 1 x 1) (1) 

2.5 Bearing puller 

  • Perpendicular or 90° to the bearing. ✔ (1)

2.6 Cylinder leakage tester 
2.6.1

  • To prevent damage to the seals and tester ✔
  • To ensure the correct reading ✔
    (ANY 1 x 1) (1) 

2.6.2

  • To prevent damage to the tester and spark plug hole or  injector hole ✔
  • To ensure the correct reading ✔
    (ANY 1 x 1) (1) [10]

QUESTION 3: TOOLS AND EQUIPMENT 
3.1 Testers 
3.1.1 Cylinder leakage tester 

  • Is used to determine a leakage in the cylinder✔.
  • Determine the volume of leakage✔ (2) 

3.1.2 Fuel pressure tester 

  • Is used to test the fuel operating pressure in the system ✔
  • Is used to test the fuel pressure in the fuel line that runs to  the direct injection. ✔ (2) 

3.1.3 Torsion tester 

  • Is used to investigate the relationship between momentum or  torque applied to material ✔
  • Is used to investigate influence of material length on torsional  deflection. ✔ (2) 

3.2 Reasons for high CO2 reading 

  • Lean fuel mixture setting ✔
  • Low compression ✔
  • Faulty high tension leads ✔
    (ANY 2 x 1) (2) 

3.3 MIGS/MAGS-welding 
3.3.1 Reasons for using inert gas during MIGS/MAGS welding 

  • Stabilises the arc on the parent metal ✔
  • Shields the arc and weld pool from atmospheric gases like  oxygen ✔ (2) 

3.3.2 Advantages of MIGS/MAGS welding 

  • Can weld in any position ✔
  • Less operator skill required ✔
  • Continuous welding can be done ✔
  • Causes less deformation ✔
  • Faster than arc welding ✔
  • Minimal post weld cleaning ✔
  • No slag removal is required ✔ 
    (ANY 2 x 1) (2) [12]

QUESTION 4: MATERIALS  
4.1 Characteristics of structures 
4.1.1 Austenite  

  • Soft ✔
  • Coarse grain structure ✔
  • Non-magnetic ✔
    (ANY 2 x 1) (2) 

4.1.2 Ferrite  

  • Soft ✔
  • Ductile ✔
  • Magnetic ✔
    (ANY 2 x 1) (2) 

4.2 Iron-carbon equilibrium diagram  
4.2.1 Lower critical point (AC1) of steel 

  • The structure starts to change ✔✔ (2)  

4.2.2 Higher critical point (AC3) of steel 

  • The structure turns into complete Austenite ✔✔
  • The steel completely loses its magnetic properties ✔✔ 
  • The structure turns into its finest grain size ✔✔
    (ANY 1 x 2) (2)  

4.3 Reasons to enhance properties of a crankshaft 

  • To produce a hard face with a tough core. ✔
  • To induce toughness ✔ (2) 

4.4 Reasons for the tempering of a camshaft 

  • To increase the lifespan of the camshaft ✔
  • To eliminate brittleness caused by hardening. ✔
    (ANY 2 x 1) (2) 

4.5 Heat treatment process on piston rings 

  • Hardening ✔ (1) [13] 

QUESTION 5: TERMONOLOGY
5.1 Key dimensions  
5.1.1 The width of the key 

  • Width  = D
                   4
    = 120      ✔ 
         4 
    = 30 mm ✔ (2) 

5.1.2 The thickness of the key 

  • Thickness  = D
                         6
    = 120      ✔ 
         6 
    = 20 mm ✔ (2) 

5.1.3 The length of the key

  • Length = D × 15  ✔
    = 120 ×  15 ✔
    = 180 mm (2) 

5.2 Indexing 

  •  Indexing = 40 
                       n
    40   ÷       ✔ 
       124     2
    =   20           ✔ 
         62
    No full turns and 20 holes in a 62 hole circle (3) 

5.3 Height of screw the screw thread 

  • H = 0 866
    = 3  × 0 866  ✔
    = 2 6  mm ✔ (2) 

5.4 Gear terminology 
5.4.1 Addendum = m 

  • = 3 mm ✔ (1) 

5.4.2 Dedendum

  • = 1,157 m                        or                       =1,25 m 
    = 1,157 x 3 ✔                                             =1,25 x 3 ✔ 
    = 3,47 mm ✔                                              =3,75 mm ✔ (2) 

5.4.3 Clearance

  • = 0,157 m                        or                         =0,25m 
    = 0,157 x 3 ✔                                              =0,25 x 3 ✔
    = 0,47 mm ✔                                              =0,75 mm ✔ (2) 

5.4.4 

  •  Module  =   PCD 
                          T
    PCD = m ×  T ✔
    = 3 ×  48   ✔
    = 144 mm ✔(2) 

5.4.5

  • OD = PCD + 2m ✔ 
    = 144 + 2(3) 
     = 144 + 6 
     = 150 mm ✔ (2) 

5.4.6 Cutting depth

  • = 2,157 m ✔                     or                     =2,25m ✔ 
    = 2,157 x 3                                                =2,25 x 3 
     = 6,47 mm ✔                                             =6,75 mm ✔ (2) 

5.4.7 Circular pitch

  • = m x π✔
    = 3 x π
     = 9,42 mm ✔ (2) 

5.5 Setting of the lathe and cutting tool to cut a metric V-screw thread:

  • Set the lathe to the correct speed for screw cutting ✔
  • Set the lead screw according to the required pitch ✔
  • Set the dial gauge to position with the required worm gear ✔
  • Set the compound slide to half the included angle of the thread (30°) ✔
  • Set the cutting tool centre height and 90° to the work piece with the  help of a centre gauge ✔
  • Set cross slide and compound slide collars to zero with the tool  touching the work piece ✔ (6) [30] 

QUESTION 6: JOINING METHODS  
6.1 Welding defects 
6.1.1 Slag inclusion 

  • Welding speed too fast ✔
  • Not removing the slag from the previous weld run before  welding the next run ✔
  • Current too low ✔ 
     (ANY 2 x 1) (2) 

6.1.2 Incomplete penetrations 

  • Welding speed too fast ✔
  • Faulty joint design ✔
  • Electrode too large ✔
  • Current too low ✔ 
     (ANY 2 x 1) (2) 

6.2 Atmospheric contamination during MIGS/MAGS welding 

  • Inadequate shielding gas flow ✔
  • Excessive shielding gas flow ✔
  • Severely clogged nozzle ✔
  • Damaged gas supply system ✔
  • Excessive wind in the welding area ✔ 
    (ANY 2 x 1) (2)  

6.3 Nick break test 

  • Make a hacksaw cut at both edges, through the centre of the weld ✔ 
  • Place the saw-nicked specimen on two steel supports ✔
  • Use a sledge hammer to break the specimen by striking it in the zone  where you made the saw cuts ✔
  • Defects like incomplete fusion, slag inclusion and brittleness will be  exposed in the break ✔
  • Any defects bring it to the attention to the welder to rectify it ✔ (5)

6.4 Reasons for destructive tests 
6.4.1 Bend test 

  • To determine the ductility/elongation ✔✔ of the weld metal. (2)  

6.4.2 Machinability test 

  • To determine the welds hardness ✔ and its strength. ✔ (2)  

6.5 X-ray test 

  • To detect internal defects in the weld metal✔✔ (2)

6.6 Weld crater 

  • Forms where welding is resumed at the bottom of the previous weld instead  of on the top ✔✔ (2) 

6.7 MIGS/MAGS welding 
6.7.1 Welding process 

  • MIGS/MAGS welding ✔ (1)  

6.7.2 Labelling 

  • A. Parent metal ✔
  • B. Arc ✔
  • C. Electrode wire ✔
  • D. Gas shroud ✔
  • E. Shielding gas ✔ (5)  [25]

QUESTION 7: FORCES 
7.1 Resultant 
7.1

  • ∑HC = 200 +  210cos60 - 190cos 40º  ✔
    = 200 + 105 - 145.55  ✔ ✔  ✔
    = 159,45  N   ✔ (4)
  • ∑VC = 210sin 60º + 190sin 40º - 185 
    = 181,87 + 122,13 - 185 ✔✔
    = 119 N ✔ (3) 

OR  

Horizontal  components

Magnitudes 

Vertical  components

Magnitudes

200N 

200 N ✔ 

210NSin60º

181,87N ✔

210N 

105 N ✔ 

190NSin40º

122,13 N ✔

190N Cos40º

-145,45 N ✔ 

-185 N 

-185 N

TOTAL 

159,45 N ✔ 

TOTAL 

119 N ✔

2 2 2 

  • E2 =  HC2 + VC2
    E = √ 159,452 + 1192
    E = 198,96 N  ✔ ✔ 
    NOW (3) 
    Tan θ = VC✔ 
                 HC
       119               
      159,45N
    = 36,74º E 
    E = 198,96N 36,73º south of west  ✔ 
    OR 
    = 36º 44' minutes south of west ✔  (3) 

7.2 Stress and Strain  
7.2.1 Resistance area 

  • A = π (D2 -  d2)
                     4
    = π (0,0562 -  0,0382)  ✔ 
                     4 
    = 1,33 × 10-3m2   ✔ (2) 

7.2.2 Stress 

  • Stress  =  force
                    area 
    stress =   20 × 103   
                  1,33 × 10-3
    =15037593,98  Pa
    Stress= 15,04MPa ✔(3) 

7.2.3 Strain 

  • Strain  = Δl    ✔
                  OL 
    Strain = 50 - 49,975 
                       50
    Strain = 0,025
                   50
    = 0,5 ×  10-3  ✔ (3) 

7.2.4 Young’s Modulus of Elasticity 

  •  Youngs Modulus of Elasticity = Stress   ✔ 
                                                       Strain 
    E = 15,04 × 10
               0,5 10-3 
    = 30,08 × 109  Pa
    = 30,08 GPa ✔ (3) 

7.3 Moments  
7.3 7.3 MEMO
Calculate B. Moments about A: 

  • ∑LHM =∑ RHM 
    ( B × 6) = (300 × 1,5) + (850  × 3) ✔
    6B = 3000    ✔ 
    6           6     
    B = 500N  ✔

Calculate A. Moments about B: 

  • ∑RHM =∑LHM 
    (A ×  6) =(850 ×  3) +(300 ×  4,5) + (600 ×  6)
    6A = 2550 + 1350 + 3600
    6A = 7500    ✔ 
    6           6     
    B = 1250N  ✔(6) [30] 

QUESTION 8: MAINTENANCE  
8.1 Reason using SAE 20W50 

  • This to ensure that the oil is able to satisfy the operational ✔ requirements  over a range of temperature ✔ from start-up to running hot. (2) 

8.2 Maintain V-belt drive systems 

  • Check the contact surfaces of the pulley to prevent the belt from being  damaged.✔
  • Check the belt condition and replace if it is worn.✔
  • Correct installation procedure must be followed. ✔
  • Belt drives should be well guarded to prevent foreign objects to come  into contact with the belts and pulleys.✔
  • Keep guard mesh free of papers, rags, etc. that can cause insufficient  air flow. ✔
  • Check that the belt deflection is according to specification. ✔
  • Store replacement belts in a cool, well ventilated place. ✔
  • Correct alignment of pulleys. ✔
    (ANY 2 x 1) (2) 

8.3 Flash point 

  • It is the lowest temperature ✔ at which the oil gives off vapours ✔ which can  ignite. ✔ (3) 

8.4 Maintaining cutting fluid  

  • Avoid contamination of the cutting fluid by draining and regularly  replacing it. ✔
  • Always clean the machine's splash tray of metal cutting after use. ✔
  • Regularly wipe cutting fluid splashes of machine parts. ✔
  • Ensure that the sump is topped up from time to time and check that  there is sufficient flow of cutting fluid to the cutting tool. ✔
    (ANY 2 x 1) (2) 

8.5 Functions of the clutch plate 

  • It provides friction between the flywheel and pressure plate. ✔
  • It serves as a link between the clutch and the gearbox main shaft. ✔ (2) 

8.6 Reasons for skimming the flywheel 

  • To remove the grooves caused by the clutch plate. ✔
  • To ensure a full contact surface between the flywheel and the clutch  plate. ✔
  • To prolong the life of the clutch plate. ✔
    (ANY 2 x 1) (2)

8.7 Properties of grease 

  • It must be water resistant, it must not mix with water ✔
  • Prevents rust/corrosion ✔
  • Good for load pressures ✔
  • High melting point ✔
  • Low freezing point ✔
  • Prevent gumming ✔
  • Be able to lubricate ✔
  • High viscosity ✔
    (ANY 2 x 1) (2) [15]

QUESTION 9: SYSTEMS AND CONTROL
9.1 Gear drives  
9.1.1 Rotation frequency of input shaft 

  • NA = TB × TD × TF
    N   TA × TC × TE
    NA = TB × T× TF × NF
                  TA × TC × TE
    = 30 × 46 × 80 × 160
             20 × 18 × 42
    = 1401,90r/min  (3) 

9.1.2 Velocity ratio 

  • VR=  NA
             NF
    VR= 1401,90
               160
    = 8,76: 1  ✔ (2) 

9.2 Belt drives 
9.2.1 Rotation frequency of driver pulley

  • NDR × DDR = NDN × DDN
    NDR  = NDN  × DND
                     DDR
    = 733,33 × 0,36
                 0,24
    = 200r/min  (3) 

9.2.2 Power transmitted 

  • P = (T1 - T2)πDn
                    60
    P=  (360 - 90)π × 0,36 ×  733,33
                              60
    = 3732,20 Watts
    =3,73 kW   (2) 

9.2.3 Belt speed 

  •  Belt speed = πDN
                            60
    =  π ×  0,36 ×  733,33
                    60
    = 13,83m.s-1 ✔  (2) 

9.3 Hydraulics 
9.3.1 Fluid pressure 

  • AB = πD2
                4
    =   π0,042
              4
    = 1,26 × 10-3m2
  • PB  F    
             AB    
    =      275          
       1,26 × 10-3
    =  218253,97  pa
    or
    = 218,25  kPa     (5) 

 

9.3.2 Diameter of piston B 

  • PB =PA
    PB = FB 
              AB
    AB = FB
             PB
    AB = 5,56  × 103   
          218,25 × 103
    AB = 25,48 × 10-3m2
    ABπD2
              4
    DB = √AB × 4
                   π
    = √25,48 × 10-3 × 4
                     π
    =0,18 m 
    or
    =180 mm  (4) 

9.4 ABS 

  • ABS prevents wheels from skidding ✔ when breaking hard ✔ in difficult  conditions. (2) 

9.5 ECU 

  • Electronic Control Unit ✔ (1) 

9.6 Traction Control 

  • Prevent wheels from spinning. ✔
  • Improves road holding ✔
    (ANY 1 x 1) (1) [25]

QUESTION 10: TURBINES 
10.1 Reaction turbines 

  • Francis ✔ 
  • Kaplan ✔ 
  • Tyson ✔ 
    Gorlov ✔  (ANY 2 x 1) (2) 

10.2 Supercharger boost 

  • Boost refers to the increase in intake manifold pressure ✔  that exceeds  normal atmospheric pressure✔  (2) 

10.3 Blowers 

  • Roots ✔ 
  • Centrifugal ✔ 
  • Vane-type ✔ 
  • Twin screw type ✔ 
    (ANY 2 x 1) (2) 

10.4 Gas turbine 

  • A = Clean air inlet ✔
  • B = Compression ✔
  • C = Combustion ✔
  • D = Exhaust ✔
  • E = Turbine ✔
  • F = Combustion chamber ✔ (6) 

10.5 Application of a gas turbine 

  • Jet engines ✔
  • Naval ships ✔ 
  • Hi-performance vehicles and boats ✔ 
  • Generating electricity ✔
    (ANY 2 x 1) (2) 

10.6 Advantages of a gas turbine 

  • Less complex than internal combustion piston engines ✔
  • Only one moving part (Common shaft for: compressor and turbine) ✔ 
  • Operate at higher revolutions per minute ✔ (ANY 2 x 1) (2) 

10.7 Waste gate 

  • A waste gate is a valve that diverts exhaust gases away from the turbine  wheel ✔  to regulate the turbine/compressor speed and boost.✔  (2) 

10.8 Oil cooler 

  • To cool the oil ✔  that lubricates the turbocharger bearings and shaft. ✔  (2) [20] 

TOTAL: 200

Last modified on Thursday, 12 August 2021 08:05