TECHNICAL MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
JUNE 2018
NOTE:
QUESTION 1 | |||
1.1 | 111010 | ??Accurate value | |
1.2 | 1.2.1 | x(x - 3) = 0 | ??Each correct x-value (2) |
1.2.2 | x2 + 3x +1 = 0 (correct to ONE decimal) x = -3 ± √(3)2 - 4(1)(1) (-1 Mark for incorrect rounding) OR | ? Formula ?Substitution ? x ≈ -0,4 ? x ≈ -2,6 ? Each x value ? Expansion ?Quadratic factors ? x ≈ -0,4 ? x ≈ -2,6 (4) | |
1.2.3 | x2 + 3x + 2 < 0 => | ?Standard form ?Critical values ?Notation ?Both values OR ? ? ? -2 < x < -1 Accurate answer ? -2< x x < -1 (4) | |
1.3 | y = x2–1 …………. (1) and y = x+1.................... (2) | ?Equating (1) and (2) ?Standard form ?Factors ?Both x-values ?Both y-values (5) | |
1.4 | b2 – 4ac = 0 | ?Discriminant = 0 ?Substitution ??Each value of b (4) | |
[21] |
QUESTION 2 | ||
2.1 | 2x.21 – 2x.2–1 = 2x (2 – 2–1) | ?Prime bases ? Factor 2x ? Factor 2 – 2–1 ? ½ (4) |
2.2 | ?Log Rule(numerator) ?Log Rule (denominator) ?Simplification loga 5 –1 ?Power rule ?Prime factors of 25 ?Prime factors of 125 ?Power rule (numerator) ?Power rule (denominator) ?Simplification (5) | |
2.3 2.3.1 | Rabbits = 1000 × 20,05(30) | ?Substitution ?Answer (2) |
2.3.2 | 8000 = 1000 × 20,05t 8 = 20,05t | ?Substitution ?log form ? t = 60 days (3) |
[14] |
QUESTION 3 | ||||||
3.1 | 3.1.1 | | Z |= √(–2)2 + (1)2 | ?Substitution ?Answer (2) | |||
3.1.2 | ?Quadrant ?Point/Coordinates (2) | |||||
3.1.3 | tanθ = –½ Accept angles in radians | ?tan ratio ?Ref Angle ?Argument (3) | ||||
3.1.4 | | Z |= √5 Accept angles in radians z = √3cis (153, 43o ) | ??Accurate polar form (2) | ||||
3.2 | (x - yi) = –2+ i OR 1(x - yi) + i(x - yi) = –2 + i x+ y = -2.............. (1) (1)+(2) : x = -½ | ?Simplification ?Conjugate product ?Simplification ? x-value ? y-value ? Multiplication ?Simplification ?Comparing real values and imaginary values ? x-value ? y-value (5) | ||||
[14] |
QUESTION 4 | |||
4.1 | 4.1.1 | inorm = 14% = 0, 035 | ? Answer (1) |
4.1.2 | ?Formula ?Substitution ?Interest (3) | ||
4.1.3 | A = 2500(1 + 0, 035)7×4 | ?Substitution ?Correct i = 0,035 and n = 21 ? Value of A (3) | |
4.2 | In A1 i = 0, 08 (8) | ||
[15] |
QUESTION 5 | |||
5.1 | 5.1.1 | 0 = – ( x – 3)2 + 4 OR | ?h(x) =0 ?Transposition ?A co-ordinates ?B co-ordinates ?h(x) =0 ?Factors ?A coordinates ?B coordinates (4) |
5.1.2 | h(x) = -x2 + 6x - 5 | dy ?Coordinates (2) | |
5.1.3 | x ∈ [0; 6] OR 0 ≤ x ≤ 6 | ?0 ?6 ?Correct notation (3) | |
5.1.4 | Maximum height = 4 units | ?Answer | |
5.1.5 | y-intercept of h = –5 | ?y-intercept ? 5 units (2) | |
5.1.6 | y ≤ 4 OR y Î (-∞; 4] OR - ∞ < y ≤ 4 | ? Notation ? Value(s) (2) | |
5.1.7 | x ∈ [3;5] OR 3 ≤ x ≤ 5 | ?3 ?5 ?Correct notation (3) | |
5.2 | No. The truck height (4,5) is greater than the | ? No ? Bridge less than truck height OR Truck height greater than the bridge height ?Cross bar (3) | |
5.3 | At F, x = 3 y = – 3+5 =2 FD = D – F | ?y-value at F ?Subtracting y-values ? FD (3) | |
[23] |
QUESTION 6 | |||
6.1 | 6.1.1 | 0 = –2 + 1 | ?y =0 ? Coordinates (2) |
6.1.2 | f(x) = 20 y =1 | ? Value of y (1) | |
6.1.3 | y=0 for f(x) x = 0 and y =1 for g(x) –1 Mark for 1 omitted asymptote | ?y =0 ?x =0 and y=1 (2) | |
6.2 | ?Shape of f ? y-intercept of f ? y=1 Asymptote of g ? 1 more point on f ?Shape of g ? 1 more point on g ? x- intercept of g (7) | ||
6.3 | 6.3.1 | x ∈ R, x ≠ 0 | ?Restriction ?Domain value (2) |
6.3.2 | x ∈ (0; +∞ ) OR x > 0 | ?Correct inequality (1) | |
[15] |
QUESTION 7 | ||||
7.1 | f (' x)= lim f ( x+ h) – f ( x) f '(x)= lim –2 ( x+ h)2 – (–2x2 ) f (x)= lim –2x2 – 4xh – 2h2 + 2x2 | ?Formula ?Substitution ?Expansion ?Factors ? f '(x)= –4x (5) | ||
-1 Mark for incorrect notation in 7.1 or 7.2 | ||||
7.2 | y = 2√x – 1 dy = x½ + x-2 OR dy = 1 + 1 | ?2x½ ?x-1 ? x½ ?x-2 | ||
7.3 | g'(x) = 2x - 2 | ? g'(x) ? mtangent ?(2;0) ? c = – 4 ? y = 2x – 4 (5) | ||
| [14] |
QUESTION 8 | ||
8.1 | f (–1) = (–1)3 + 4(–1)2 + (–1) – 6 | ?f (–1) = – 4 ≠ 0 |
8.2 | f (1) = (1)3 + 4(1)2 + (1) - 6 = 0 1 4 1 -6 f(x) = (x–1) (x2+5x+6) | ? f(x) =0 ? First linear factor ?Quadratic factor ?Factors of x2+5x+6 ?All coordinates (5) |
8.3 | y-intercept = –6 | ?Answer (1) |
8.4 | f '(x)= 3x2 + 8x+1 | ? f '(x) = 0 ?x- values (-0,13; -6,06) (-2,54; 0,89) OR Y – coordinates of TP ? y= -6, 06 ? y= 0,89 |
8.5 |
| ?Shape ?x-intercepts ?Max. Turning point ?Min. Turning point ? y-intercepts (5) |
| [16] |
QUESTION 9 | |||
9.1 | 9.1.1 | Surface Area = 2(2x.x +2x.h + x.h) ∴ h = 120 - 4x2 | ? Formula ?Substitution ? Simplification ? h (3) |
9.1.2 | V = l.b.h | ?V = l.b.h ?Substitution (2) | |
9.1.3 | dV = 40 – 4x2 | ? dV ? x = 10 ≈ 3,16 cm3 (3) | |
9.2 | T = t3 - 9t 2 + 50t - 66 | ? 3t 2 -18t + 50 ?Substitution by 5 dT =35 C.s-1 (3) | |
| [11] |
QUESTION 10 | ||
10.1 |
| ? x3 ? - x 2 ? c |
10.2 | ?Integration expression ?Simplification ?Substitution by 1 and 0 ? 1 square units (4) | |
[7] |
TOTAL:150