PHYSICAL SCIENCES: PHYSICS
PAPER 1
GRADE 12 
AMENDED SENIOR CERTIFICATE EXAMS
PAST PAPERS AND MEMOS
MAY/JUNE 2018

MEMORANDUM 

QUESTION 1
1.1 C✔✔ (2)
1.2 A✔✔ (2)
1.3 D✔✔ (2)
1.4 A✔✔ (2)
1.5 C✔✔ (2)
1.6 A✔✔ (2)
1.7 B✔✔ (2)
1.8 B✔✔ (2)
1.9 D✔✔ (2) 
1.10 A✔✔ (2) [20]

QUESTION 2
2.1 The rate of change of velocity. ✔✔ 
Accept
Change in velocity per unit time  (2) 

NOTE:
If any one of the underlined key words in the correct context is omitted  deduct 1 mark. 

2.2

OPTION 1
Δy = viΔt + ½ aΔt2✔ 
0,5 = (0)(3) + ½ (a)(32) ✔
a = 0,11 m·s-2✔   (3) 

OPTION 2
Δy = (vi + vf)  Δt ✔ 
            2 
0.5 = (0 + vf) (3)
             2
vf = 0,333 m∙s-1 
OR
vf = vi + aΔt  
0,33 = 0 + a(3)✔ 
a = 0,11 m∙s-2✔ 
1 mark for either of the two (3)

OPTION 3
vf = vi + aΔt 
 = 0 + 3a 
vf - = 3a…………..(i) 
OR
vf2 = vi2 + 2aΔy 
 = 02 + 2a(0,5) 
vf = √a ………….(ii) 
9a2 = a ✓ 
∴a = 0,11 m·s-2✓ 
1 mark for either of the two (3

2.3 

POSITIVE MARKING FROM 2.2 
OPTION 1 
For the 3 kg mass: 
Fnet = ma  ✔
(mg – T)/(mg + T) = ma  
(3)(9,8) – T = (3)(0,11) ✔ 
T = 29,07 N ✔ 

OPTION 2
For the 3 kg mass: 
OP 2 KJHGJHGA
vf = 0,333 m∙s-1 
OR
POSITIVE MARKING FROM 2.2
vf = vi + aΔt  
 = 0 + (0,11)(3) 
 = 0,33 m∙s-1 

Wnet = ∆EK✔ 
Ww + WT = ½ mvf2 - ½ mvi2 
mg∆xcosθ + T∆xcosθ = ½ mvf2 - ½ mvi
(3)(9,8)(0,5)cos0º + T(0,5)cos180º = ½ (3)(0,332 – 02)✔
14,7 – 0,5T = -0,16 
T = 29,72 N ✔  (3) 

OPTION 3
Wnc = ΔEk + ΔEp ✔ 
TΔxcos180º = ½ mvf2 – ½ mvi2 + mghf - mgh
T(0,5)cos180º = ½ (3)(0)2 – ½ (3)(0,33)2 + (3)(9,8)(0) – (3)(9,8)(0,5) ✔
T = 29,72 N✔   (3)  

2.4 (4) 

ACCEPT UIYGUYJHA

  Accepted labels
Fg / Fw / weight / mg / gravitational force   ✔  
w Friction/ Ff / fk / 27 N/ wrywing / Fw ✔ 
N

Normal (force) / FnormaL / FN /Freaction

✔ 
T FT/tension ✔ 

Notes

  • Mark awarded for label and arrow 
  • Do not penalise for length of arrows since drawing is not to scale.
  • Any other additional force(s)  Max 3/4
  • If force(s) do not make contact with body : Max: 3/4 

(4)

2.5 

POSITIVE MARKING FROM 2.2 AND 2.3

For P 
Fnet = ma  ✔ 
T- f = ma 
29,07 - 27 = m(0,11) ✔ 
m = 18,82 kg ✔ (Range: 18,60 – 18,82)  

OR

For P 
Fnet = ma  ✔
T- f = ma 
29,72 - 27 = m(0,11) ✔
m = 24,73 kg ✔   (3)  

[15]

QUESTION 3
3.1

  • Motion under the influence of gravity/weight/gravitational force only. ✔✔ 
    OR
  • Motion in which the only force considered is gravitational. ✔✔  (2) 

NOTE:
If ONLY is omitted minus 1 mark. 

3.2 

OPTION 1
UPWARDS AS POSITIVE
Δy = viΔt + ½ aΔt2✔ 
 = (0)(1) + ½ (-9,8)(12) ✔ 
 = - 4,9 m 
Height = 2Δy  
 = (2)(4,9) 
 = 9,8 m✔ 

DOWNWARDS AS POSITIVE
Δy = viΔt + ½ aΔt2✔ 
 = (0)(1) + ½ (9,8)(12) ✔ 
 = 4,9 m 

Height = 2Δy  
 = (2)(4,9) 
 = 9,8 m✔

OPTION 2

UPWARD POSITIVE 
vf = vi + aΔt 
 = 0 + (-9,8)(1) 
 = -9,8 m·s-1 

9.8 JHAJ

 = - 4,9 m  

Height = (2)(4,9) 
 = 9,8 m✔ 

DOWNWARD POSITIVE
vf = vi + aΔt 
 = 0 + (9,8)(1) 
 = 9,8 m·s-1 
9.8 POSITIVE
 = 4,9 m  
Height = (2)(4,9) 
 = 9,8 m✔ 

OPTION 3

UPWARD POSITIVE 
vf = vi + aΔt 
 = 0 + (-9,8)(1) 
 = -9,8 m·s-1 
vf2 = vi2 + 2aΔy✔ 
(-9,8)2 = 0 + (2)(-9,8)Δy ✔
Δy = - 4,9 m 

Height = 2Δy  
 = (2)(4,9) 
Height = 9,8 m✔

DOWNWARD POSITIVE
vf = vi + aΔt 
 = 0 + (9,8)(1) 
 = 9,8 m·s-1 

vf2 = vi2 + 2aΔy✔ 
(9,8)2 = 0 + (2)(9,8)Δy ✔
Δy = 4,9 m 

Height = 2Δy  
 = (2)(4,9) 
Height = 9,8 m✔

OPTION 4

UPWARD POSITIVE 
vf = vi + aΔt  
 = 0 + -9,8(1) 
vf = -9,8 m∙s-1

DOWNWARD POSITIVE
vf = vi + aΔt 
 = 0 + 9,8(1) 
= 9,8 m∙s-1

E(mech)Top = E(mech atB) 
(Ep +Ek)Top = (Ep +Ek) at B 
(mgh + ½ mv2)Top = (mgh + ½ mv2) at B 
(9,8)(h) + 0 = (9,8) ½ (h)+ (½ )(9,82) ✔ 
h = 9,8 m ✔ 

OPTION 5

UPWARD POSITIVE 
vf = vi + aΔt  
 = 0 + -9,8(1) 
vf = -9,8 m∙s-1

DOWNWARD POSITIVE
vf = vi + aΔt  
 = 0 + 9,8(1) 
 = 9,8 m∙s-1

Wnet = ∆K✔ 
mgΔxcosθ = ½ mvf2 - ½ mvi2 
(9,8) ½h cos0º = ½ (9,82 -0) ✔ 
h = 9,8 m✔

OPTION 6

UPWARD POSITIVE
vf = vi + aΔt  
 = 0 + -9,8(1) 
vf = -9,8 m∙s-1

DOWNWARD POSITIVE
vf = vi + aΔt  
 = 0 + 9,8(1) 
vf = 9,8 m∙s-1

Wnc = ∆K + ∆U✔ 
 0 = (½mvf2 - ½ mvi2) + (mg½h - mgh) 
(9,8)( ½h) = (½)(9,82 -0) ✔ 
h = 9,8 m✔  (3)

3.3  (3) 

OPTION 1
UPWARDS AS POSITIVE
vf2 = vi2 + 2aΔy✔ 
 = 0 + (2)(-9,8)(-9,8) ✔ 
vf = 13,86 m∙s-1 ✔ 

DOWNWARDS AS POSITIVE
vf2 = vi2 + 2aΔy✔ 
 = 0 + (2)(9,8)(9,8) ✔ 
vf = 13,86 m∙s-1 ✔ 

OR
FROM POINT B
UPWARDS AS POSITIVE
vf2 = vi2 + 2aΔy✔ 
 = (-9,8)2 + (2)(-9,8)(-4,9) ✔ 
vf = -13,86 m∙s-1 

Magnitude = 13,86m·s-1✔ 
DOWNWARDS AS POSITIVE
vf2 = vi2 + 2aΔy✔ 
 = (9,8)2 + (2)(9,8)(4,9) ✔ 
vf = 13,86 m∙s-1 ✔     (3) 

OPTION 2
Δy = viΔt + ½ aΔt2 
-9,8 = 0 + ½ (-9,8)Δt
Δt = 1,41 s 
OR
vf = vi +aΔt  
 = 0 + (-9,8)(1,41) ✔ 
 = -13,82 m·s-1 
Magnitude = 13,82 m·s-1 ✔ 
1 mark for either of the two

3.4 

OPTION 1
POSITIVE MARKING FROM 3.3
UPWARDS AS POSITIVE 
vf2 = vi2 + 2aΔy ✔ 
0 = vi2 + (2)(-9,8)(4,9) ✔ 
vi = 9,8 m∙s-1 
Fnet∆t = m∆v 
OR
Fnet∆t = m (vf – vi
1 mark for any  
Fnet(0,2) ✔ = 0,4[9,8 –(-13,86)] ✔ 
Fnet = 47,32 N✔ 

UPWARDS AS POSITIVE
vf2 = vi2 + 2aΔy✔ 
0 = vi2 + (2)(9,8)(-4,9) ✔ 
vi = -9,8 m∙s-1 
If calculation of 9,8 m∙s-1 is not shown and it is substituted correctly award 1  mark 
Fnet∆t = m∆v 
OR
Fnet∆t = m (vf – vi
1mark for any
Fnet(0,2) ✔= 0,4[-9,8 - (13,86)]✔ 
Fnet = -47,32 N 

Fnet = 47,32 N✔ 

OPTION 2
POSITIVE MARKING FROM 3.3
Emech top = E(mech ground
(Ep +Ek)top = (Ep +Ek)bottom
(mgh + ½ mv2)top = (mgh + ½ mv2)bottom
(0,4) (9,8) (4,9) + 0 = ½ (0,4)vf2 ✔ 
vi= 9,8 m∙s-1 
If calculation of 9,8 m∙s-1 is not shown  and it is substituted correctly award 1 mark 
Fnet∆t = m∆v  
Fnet∆t = m(vf – vi
Fnet(0,2) ✔ = 0,4[9,8 - (-13,86)]✔ 
Fnet = 47,32 N✔  (6) 

OPTION 3
POSITIVE MARKING FROM 3.3
vf = vi + aΔt ✔ 
9,8 = -13,86 ✔+ a(0,2) ✔ 
a = 118,3 m·s-2 
Fnet = ma ✔ 
 = (0,4)(118,3) ✔ 
 = 47,32 N ✔  (6) 

[14]

QUESTION 4
4.1 (4) 

E(mech top) = E(mech bottom
(Ep + Ek)top = (Ep + Ek)bottom
(mgh + ½ mv2)top = (mgh + ½ mv2)bottom 
(1,5)(9,8)(2) + 0 ✔= 0 + ½ (1,5)v2✔ 
 v = 6,26 m∙s-1✔ 

4.2 In a/an closed/isolated✓ system, the total✓ linear momentum is conserved. (2) 
4.3 (4) 

POSITIVE MARKING FROM 4.1
Σpi = Σpf 
m1v1i + m2v2i = m1v1f + m2v2f 
m1v1i + m2v2i = (m1+ m2)v 
(1,5)(6,26) + 0✔ = (1,5 + 2)vf ✔ 
vf = 2,68 m∙s-1✔ 

4.4 POSITIVE MARKING FROM 4.3
OPTION 1
Δx = vΔt✔ 
 = (2,68)(3) ✔ 
 = 8,04 m ✔ 

OPTION 2
4.3 kjhjhga
= 8,04 m 

OPTION 3
Δx = viΔt + ½ aΔt2✔ 
 = (2,68)(3) + ½ (0)(3)2✔ 
 = 8,04 m ✔ (Range 8,04 – 8,05) (2) [13] 
QUESTION 5
5 mnbvhagfd (2) 

Accepted labels

w

Fg/Fw/weight/mg/gravitational force/N/19,6 N 

Tension/FT/ FA/ 

Notes

  • Mark awarded for label and arrow
  • Do not penalise for length of arrows since drawing is not to scale.
  • Any other additional force(s) Max 21 
  • If force(s) do not make contact with body: Max: 21

5.2 Tension✔
Accept       Fapplied  (1)
5.3 

W = F∆xcosθ 
Ww = mg∆xcosθ 
 = 75(9,8) (12)cos 180º✔
 = - 8 820 J✔ 

OR

Ww = -ΔEp ✔ 
 = − (mgh − 0) 
 = -(75)(9,8)(12) ✔ 
 = -8 820 J✔  (3) 

5.4

  • The work done on an object by a net force is equal to the change in the  object’s kinetic energy. ✔✔
    OR
  • The net work done on an object is equal to the change in the object’s kinetic  energy✔✔  (2) 

NOTE:
If any one of the underlined key words in the correct context is omitted  deduct 1 mark. 

5.5 (5) 

POSITIVE MARKING FROM 5.3
OPTION 1
Wnet = ∆K ✔
Fnet∆xcosθ = (½ mvf2 - ½ mvi2)  
(75)(0,65)(12) ✔cos0º ✔ = ½(75)( vf2 - 0) ✔
vf = 3,95 m∙s-1 (3,949 m∙s-1) ✔ 

POSITIVE MARKING FROM 5.2
OPTION 2 
Wnet = ∆K ✔ 
Wnc = ∆K + ∆U 
WT + Wg = ∆K 
Wnc = (½ mvf2 - ½ mvi2 )+ (mghf - mghi)
9405 ✔= (½ (75)vf2 -0) ✔+ (75)(9,8)(12 -0)✔
vf = 3,95 m⋅s-1✔ 
T – mg = ma 
T – 75(9,8) = 75(0,65)✔ 
T = 783,75 N 
WT = 783,75 (12) cos0º✔ 
 = 9405 J 
9405 – (8820) = ½ (75)(vf2 – 0)✔ 
vf = 3,95 m∙s-1 (3,949 m∙s-1)✔ 

[13]

QUESTION 6
6.1 It is the (apparent) change in frequency (or pitch) of the sound (detected by a  listener) ✔because the sound source and the listener have different velocities  relative to the medium of sound propagation. ✔ 
 OR
An (apparent) change in(observed/detected) frequency (pitch),(wavelength) ✔ as a result of the relative motion between a source and an observer ✔ (listener).   (2) 

NOTE:
If any one of the underlined key words in the correct context is omitted  deduct 1 mark. 

6.2 
OPTION 1
6.2 1 uihgia(7) 
OPTION 2
6.2 2jhgvjhga(7) 

6.3 Greater than ✔(1) [10]
QUESTION 7
7.1

  • The two forces must be equal in magnitude ✔ but in opposite directions ✔
    OR
  • The force experienced by Q due to P, must be equal in magnitude ✔but  opposite in direction to the force experienced by Q due to V.✔ (2) 

7.2

  • The magnitude of the electrostatic force exerted by one point charge on  another point charge is directly proportional to the product of the (magnitudes  of the) charges✔ and inversely proportional to the square of the distance (r)  between them. ✔
    OR
  • The force of attraction or repulsion between two point charges is directly  proportional to the product of the charges ✔ and inversely proportional to the  square of the distance between them. ✔ (2)

NOTE:
If mass is mentioned instead of charges. 0/2  

NOTE:
If any one of the underlined key words in the correct context is omitted  deduct 1 mark. 

7.3 (5) 

OPTION 1
F = kQ1Q2
         r2

FPQ(9 × 109)(Q)(5×10-6)
                     (x2)
= 45 × 103Q
        
FVQ = (9 × 109 )(Q)(7×10-6 )
                       (1- x)2

= 63 × 103Q
     (1- x)2
(Fnet = FPQ - FVQ = 0)
45 ×103 = 63 × 103 (equating two equations)
      x2                (1- x)2

6,708(1 - x) = 7,937x x
=
0,458 m
x is 0,46 m (away from P) 

OPTION 2

E = kQp
        r2
EnetkQpkQv
           r2          r2
(Enet = Ep - Ev = 0)
0 = (9 × 109)(5  × 10−6   -  (9 ×109)(7 ×10−6)
                  x                               (1− x)2
 (9 × 109)(5  × 10−6 )   =  (9 ×109)(7 ×10−6)   (equating two equations)
                  x                               (1− x)2

∴x = 0,46m (away from P)   (5) [9]

QUESTION 8
8.1
8.1 jhbhabd memo(2) 

Criteria for sketch

Marks

Lines are directed away from the charge 

Lines are radial, start on sphere and do not  cross.

8.2 (7) 

Q = ne✔ 
 = (8 x 1013)(-1,6 x10-19) ✔ or (8 x 1013)(1,6 x 10-19
 = -12,8 x 10-6 
Net charge on the sphere = (+ 6 x 10-6 ) + (-12,8 x 10-6) ✔ 
Qnet = - 6,8 x 10-6
E = kQ ✔ 
       r2
E = (9 × 109) (6,8 × 10-6
                    (0,5)2 
 = 2,45 x 105 N⋅C-1✔ towards sphere ✔

[9] 

QUESTION 9
9.1.1 The potential difference across a conductor is directly proportional to the  current in the conductor at constant temperature. 
OR
The ratio of potential difference across a conductor to the current in the  conductor is constant, provided the temperature remains constant.  (2) 

NOTE:
If any one of the underlined key words in the correct context is omitted  deduct 1 mark. 

9.1.2 (3)

V1 = IR ✔ 
 = (0,6)(4) ✔
 = 2,4 V ✔ 

9.1.3 (2) 

POSITIVE MARKING FROM 9.1.2
I =
         R
 = 2,4 ✔
      6
 = 0,4 A✔ 

OR

 6 (I)  = 0,6 ✔
10 
 I = 1 A 
I6Ω = 0,4 A✔ 

OR
V4Ω = V6Ω 
I4ΩR1 = I6ΩR
(0,6)(4) = I6Ω(6) ✔
I6Ω = 0,4 A ✔

9.1.4 (2) 

POSITIVE MARKING FROM 9.1.3 
V2 = IR 
 = (0,4 + 0,6)(5,8) ✔ 
 = 5,8 V ✔ 

9.1.5 (3) 

POSITIVE MARKING FROM 9.1.4 AND 9.1.2 
OPTION 1
Vext = (5,8 + 2,4) ✔ 
 = 8,2 V 
V int = Ir  
 = (1) (0,8) ✔ 
 = 0,8 V 
Emf = 0,8 + 8,2 = 9 V✔

OPTION 2

9.1.5 GUFUHGAUYG 

9.1.6 (3)

POSITIVE MARKING FROM 9.1.5 AND 9.1.3

W = V I ∆t ✔ 
 = (0,8)(1) (15) ✔ 
 = 12 J ✔

W = I2R ∆t ✔ 
 = (1)2 (0,8)(15) ✔
 = 12 J✔

W = V2Δt  ✔ 
          R 
= 0,82(15 ) 
       0,8 
 = 12 J ✔ 

9.2.1 (2) 

R = V
       I
= 2,8 
   0,7 
 = 4 Ω ✔ 

9.2.2 Increases ✔

  • Total resistance decreases, ✔ current/power increases✔, motor turns faster (3) [20] 

QUESTION 10
10.1 
10.1.1 Split ring / commutator ✔ (1)
10.1.2 Anticlockwise ✔✔(2) 
10.1.3 Electrical energy ✔to mechanical(kinetic) energy ✔  (2) 
10.2 
10.2.1 DC generator: split ring/commutator and AC generator has slip rings✔ 
OR
AC generator: slip ring and DC generator has split rings✔ (1) 
10.2.2   (3) 

Vrms  = Vmax
            √2 
= 320  ✔ 
    √2 
 = 226,27 V ✔ 

10.2.3 

OPTION 2 
Imax = Vmax 
           R 
= 320✔ 
    35 
 = 9,14 A 
Irms = Imax   ✔  
        √2 
 = 9,14 ✔ 
      √2 
 = 6,46 A✔

POSITIVE MARKING FROM 10.2.2

OPTION 2
PaverageV2rms 
                  R 
= 226,272✔ 
     35 
 = 1462,80 W 

Paverage = VrmsIrms✔ 
1 462,80 = (226,27) Irms
Irms = 6,46 A ✔

Paverage = I2rmsR✔ 
1 462,80 = I2rms(35) ✔
Irms = 6,46 A ✔  (4) 

POSITIVE MARKING FROM 10.2.2
OPTION 1
Irms  = Vrms226,27 ✔ = 6,46 A ✔   (4) 
           R             35 

[13] 

QUESTION 11
11.1 Work function (of a metal) is the minimum energy needed to eject an electron  from the metal/surface  (2) 

NOTE:
If any one of the underlined key words in the correct context is omitted  deduct 1 mark. 

11.2 (Maximum) kinetic energy of the ejected electrons✔  (1) 
11.3 Wavelength/Frequency (of light) ✔  (1)
11.4 Silver✔

  • According to Photoelectric equation, hf = Wo + ½ mv2 
    (For a given constant frequency), as the work function increases the kinetic  energy decreases. ✔ Silver has the smallest kinetic energy✔ and hence the  highest work function. (3) 

1.1.5 

hf = Wo + ½mv2max ✔
hc = Wo + Ek(max) 
  λ
(6,63×10-34)(3×108) = Wo + -18 9,58 ×10-8 
              2×10-8
9,945 x10-18 = Wo + 9,58 x 10-18 
Wo = 3,65 x 10-19 J✔ 

11.6 REMAINS THE SAME✔

  • Increasing intensity increases number of photons(per unit time) but frequency  stays constant✔ the energy of the photon is the same ✔therefore the kinetic energy does not  change.  (3) [14] 

TOTAL: 150 

Last modified on Tuesday, 31 August 2021 08:14