MATHEMATICS PAPER 1
NATIONAL SENIOR CERTIFICATE
GRADE 12
MEMORANDUM
SEPTEMBER 2018
NOTE:
QUESTION 1
1.1.1 | Β½ π₯2 β π₯ β 4 = 0 π₯2 β 2π₯ β 8 = 0 (π₯ β 4)(π₯ + 2) = 0 π₯ = 4 or/of π₯ = β2Β | ββ factors βπ₯-values (3)Β |
1.1.2Β | Β -3(x2Β + 3x) + 7 = 0 β3π₯2 β 9π₯ + 7 = 0 π₯ = βπ Β± βπ2 β 4ππ Β Β Β Β Β Β Β Β 2π π₯ = β(β9) Β± β(β9)2 β 4(1)(7) Β Β Β Β Β Β Β Β Β Β 2(β3) π₯ = 0,64 or/of π₯ = β3,64Β | β standard form β substitution ββ π₯-values (4)Β |
1.1.3Β | 2π₯2 β 3π₯ < 0 π₯(2π₯ β 3) < 0 0 < π₯ <3/2 | β π₯(2π₯ β 3) β critical values/kritiese waardes β βΒ 0 < π₯ <3/2 (4) |
1.2Β | π₯β2π¦=3 β¦β¦β¦β¦β¦β¦β¦..(1) 4π₯2β3=β6π¦+5π₯π¦β¦β¦β¦.(2) from (1) π₯=2π¦+3 sub into (2) 2(2π¦+3)2β3=β6π¦+5π¦(2π¦+3) 4(4π¦2+12π¦+9)β3=β6π¦+10π¦2+15π¦ 16π¦2+48π¦+36β3=10π¦2+9π¦ 6π¦2+39π¦+33=0 2π¦2+13π¦+11=0 (π¦+1)(2π¦+11)=0 π¦=β1 or π¦=β11/2 π₯=1 or π₯=β8 | β π₯=2π¦+3 β substitution β standard form β factors β y-values s β π₯-values (6)Β |
1.3Β | 2π₯2β(πβ1)π₯+πβ3=0 Ξ =π2β4ππ Ξ =[β(πβ1)]2β4(2)(πβ3) Ξ = π2β2π+1β8π+24 Ξ = π2β10π+25 Ξ = (πβ5)2 (πβ5)2β₯0 β΄Roots are Real | β Ξ =[β(πβ1)]2β4(2)(πβ3) β Ξ = π2β2π+1β8π+24 β Ξ = π2β10π+25 β Ξ = (πβ5)2 β (πβ5)2β₯0 (5) |
1.4.1Β | 32π=Β Β 3πΒ Β Β Β Β Β Β 3βπ 32π=3(1,5) Β Β Β Β Β 3β1,5 32π=3 β΄2π=1 β΄ π=Β½Β | β sub. of π=1,5 β answer (2)Β |
1.4.2Β | 32π=Β Β 3πΒ Β Β Β Β Β Β 3βπ 32(0)=Β Β 3πΒ Β Β Β Β Β Β 3βπ 1=Β Β 3πΒ Β Β Β Β 3βπ 3π=3βπ 4π=3 β΄ π=3/4Β | β sub. of π=0 β answer (2)Β [26] |
QUESTION 2
2.1Β | 2π₯+2=Β Β π₯β1Β 7π₯+1Β Β 2π₯+2 (2π₯+2)2=(7π₯+1)(π₯β1) 4π₯2+8π₯+4=7π₯2β6π₯β1 3π₯2β14π₯β5=0 (3π₯+1)(π₯β5)=0 π₯=β1/3 or π₯=5Β | β π2Β =Β π3 Β Β π1Β Β π2 β standard form β factors β π₯=β1/3 β π₯=5 (5)Β |
2.2Β | 25 ;20 ;16;β¦. π=25 ; π =4/5 πβ=Β Β πΒ Β Β Β Β Β 1βπ πβ=Β Β 25Β Β Β Β Β Β 1β4/5 πβ=125πΒ | β π=45 β πβ=π1βπ β substitution βπβ=125 π (4)Β |
2.3Β | π=2 π=29 ππ=155 ππ=π/2(π+π) 155=π/2(2+29) π=10 29=2+(10β1)π 9π=27 π=3Β | β sum formula of AS βsub. π and π βπ=10 β sub.n π=10 β π=3 (5)Β |
[14]
QUESTION 3
3. | 2π=4 π=2 24=2+π+π ............(1) 24=50+5π+π ........(2) 4π=β48 (2) β (1) π=β12 24=2β12+π π=34 ππ=2π2β12π+34 See alternative answersΒ | β 2π=4 β π=2 βsub. into π1 βsub. into π5 βmethod of solving β π=β12 β sub.of π β π=34 (8)Β |
[8]
QUESTION 4
4.1 | 36=π2 β΄π=6Β | β sub of point β π=6 (2)Β |
4.2 | π¦=6π₯ | β swop of π₯ and π¦. β π¦=log6π₯ (2)Β |
4.3Β | 0<π₯β€1Β | ββ answer (2)Β |
4.4Β | π¦>2Β | ββ answer (2)Β |
[8]
QUESTION 5
5.1Β | π΅(5;0)Β | ββ answer (2)Β |
5.2Β | π¦=π(π₯βπ)2+π π¦=π(π₯β3/2)2+49/4 0=π(5β3/2)2+49/4 π=β1 π¦=β1(π₯β3/2)2+49/4 π¦=β1(π₯2β3π₯+9/4)+49/4 π¦=βπ₯2+3π₯+10 OR π¦=π(π₯β5)(π₯+2) Inspection 49/4=π(3/2β5)(3/2+2) π=β1 π¦=β1(π₯β5)(π₯+2) π¦=βπ₯2+3π₯+10Β | β sub of turning point β sub of point B β π=β1 βπ¦=βπ₯2+3π₯+10 (4) β sub of π₯-intercepts βsub of turning point β π=β1 βπ¦=βπ₯2+3π₯+10 (4)Β |
5.3Β | βπ₯2+3π₯+10=βπ₯+5 π₯2β4π₯β5=0 (π₯β5)(π₯+1)=0 π₯=5 or π₯=β1 π(β1;6)Β | βπ(π₯)=π(π₯) β standard form β factors βπ(β1;6) (4)Β |
5.4.1Β | β1β€π₯β€5Β | ββ answer (2)Β |
5.4.2Β | βπ₯2+3π₯β2,25<0 βπ₯2+3π₯+10<2,25+10 β΄ π(π₯)<12,25 π₯βπ ;π₯β 1,5Β | β π(π₯)<12,25 ββ π₯βπ ;π₯β 1,5 accuracy (3)Β |
[15]
QUESTION 6
6.1 | Β | β asymptote β π₯-intercept β shape β other point (4)Β |
6.2Β | π(π₯)=2π₯β1β1 πβ²(π₯)=β2π₯β2Β | β πβ²(π₯)=β2π₯β2β1 β πβ²(π₯)=β2π₯β2 (2) |
6.3Β | β(π₯)=βπ₯β1Β | ββ answer (2)Β |
6.4Β | πβ²(π₯)=Β β2 and β(π₯)=βπ₯β1 | β setting up of equation β π₯=β2 β 2/β2β1 βsub of (β2; 2/β2β1) β π=2β2 (5)Β |
[13]
QUESTION 7
7.1 | 2000(1+Β Β 8Β Β )12=2000(1+Β Β πΒ Β )2 Β Β Β Β Β Β Β 1200Β Β Β Β Β Β Β Β Β Β 200 β(1+Β Β 8Β )12=(1+Β Β πΒ Β )Β Β Β Β Β 1200Β Β Β Β Β Β 200 π=8,13%Β | βΒ Β 8Β Β andΒ Β πΒ Β Β Β 1200Β Β Β Β 200 β π=12 and π=2 β π=8,13% (3)Β |
7.2Β | π΄=π(1βπ)π 4 500=9 500(1β7,7%)π π= logΒ 4500 Β Β Β Β Β Β 9500 Β Β log(1β7,7%) πβ9,325 It will take 10 years | β correct formula β sub. of A and P β use of logs βπβ9,325 β 10 years (5)Β |
7.3.1 | 75/100 Γ170 500=π
127 875 OR Β 25Β Γ170 500=42 625 100Β Loan =170 500β42 625 Loan = R127 875Β | ββ answer (2) OR β R 42 625 β answer (2)Β |
7.3.2 | 127 875=π₯[1β(1+Β 13,2Β )β60] Β Β Β Β Β Β Β Β Β Β Β Β Β Β 1200Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β Β 13.2 Β Β Β Β Β Β Β Β Β Β Β Β 1200 π₯=π 2 922,66Β | β 13.2Β Β Β 1200 β π=60 β sub of i, n and 127 875 into correct formula ββ answer (5)Β |
[15]
QUESTION 8
8.1 | π(π₯)=π₯β2π₯2 | β formula β substitution of (π₯+β) β simplification β simplification to (β4π₯ββ2β2+β) β common factor β answer (6)Β |
8.2.1Β | π¦=1/9π₯β3+9π₯ ππ¦ =β1/3π₯β4+9Β ππ₯ Penalise 1 mark for incorrect notation. | ββ1/3π₯β4 β 9 (2)Β |
8.2.2Β | π¦=Β β1Β Β +π₯3 | β βπ₯=π₯Β½ β β12π₯β32 β 34π₯β54 β 3π₯2 (4) |
[12]
QUESTION 9
9.1Β | β(π₯)= π₯3β9π₯2+23π₯β15. ββ²(π₯)=3π₯2β18π₯+23 π₯=βπΒ±βπ2β4ππ Β Β Β Β Β Β 2π π₯=β(β18)Β±β(β18)2β4(3)(23) Β Β Β Β Β Β Β Β Β Β Β 2(3) π₯=4,15 or π₯=1,85 π₯=1,85 at CΒ | β ββ²(π₯)=3π₯2β18π₯+23 β sub into formula β both π₯ values βΒ π₯=1,85 (4)Β |
9.2Β | β(π₯)= π₯3β9π₯2+23π₯β15. β(π₯)=(π₯β1)(π₯2β8π₯+15) β(π₯)=(π₯β1)(π₯β3)(π₯β5) β΄πΉ(5;0)Β | β(π₯β1)(π₯2β8π₯+15) β(π₯β1)(π₯β3)(π₯β5) ββπΉ(5;0) (4)Β |
9.3Β | β(π₯)= π₯3β9π₯2+23π₯β15. | β ββ²β²(π₯)=6π₯β18 β 6π₯β18=0 ββ΄π=3 (3)Β |
9.4Β | ββ²(π₯)=3π₯2β18π₯+23 ββ²(3)=3(3)2β18(3)+23 ββ²(3)=β4 π¦=β4π₯+π 0=β4(3)+π π=12 π¦=β4π₯+12Β | β ββ²(3)=β4 β sub of point D βπ¦=β4π₯+12 (3)Β |
[14]
QUESTION 10
10.1Β | π=π₯(50βΒ½π₯)β(ΒΌπ₯2+35π₯+25) π=50π₯βΒ½π₯2βΒΌπ₯2β35π₯β25 π=β3/4π₯2+15π₯β25Β | β π₯(50βΒ½ π₯) β subtracting total cost (2)Β |
10.2Β | ππ =β3/2π₯+15Β ππ₯ β3/2π₯+15=0 π₯=10Β | β ππ =β3/2π₯+15 Β Β ππ₯ ββ3/2Β π₯+15=0 β π₯=10 (3)Β |
10.3Β | πΆ=ΒΌπ₯2+35π₯+25 Β Β Β Β Β Β Β π₯ πΆ=ΒΌπ₯+35+25π₯β1 ππΆ =ΒΌβ25π₯β2 ππ₯ ΒΌ β25π₯β2=0 25 = ΒΌ Β π₯2 π₯2=100 π₯=10 β΄MinimumΒ Β | βπΆ= ΒΌπ₯2+35π₯+25 Β Β Β Β Β Β Β Β π₯ βπΆ=ΒΌπ₯+35+25π₯β1 β ππΆ =ΒΌ β25π₯β2 Β Β ππ₯ β ΒΌ β25π₯β2=0 β π₯=10 (5) |
[10]
QUESTION 11
11.1.1 | π(π)=1200 | β answer(1)Β |
11.1.2 | π(πΉπππ)=Β 200Β Β Β Β Β Β Β Β 1600 π(πΉπππ)=1/8 | βΒ answer(1) |
11.1.3Β | π(π)Γπ(πΉ)=3/4Γ1/8 =Β 3Β Β 32Β Β 3Β =Β Β π΄Β Β 32Β 1600 π΄=150Β | β 3/4Γ1/8 β 3Β Β Β 32 β 3Β =Β Β π΄Β Β Β Β 32Β 1600 (3)Β |
11.1.4 | π΅=1050 πΆ=50 π·=350Β | βπ΅=1050 βπΆ=50 βπ·=350 (3)Β |
11.1.5Β | π(πΉ/πΉ)=Β Β 50Β Β Β Β Β Β Β Β Β 1600 π(πΉ/πΉ)=Β 1Β Β Β Β Β Β Β 32Β | β50 β 1600 (2)Β |
11.2.1Β | 9!=362880Β | ββ answer (2)Β |
11.2.2Β | 4!Γ5!Γ6 =17 280 OR 6!Γ4!=17280Β | β 4!Γ5! β Γ6 β 17280 (3)Β |
[15]
TOTAL:150
ALTERNATIVE ANSWERS
1.1.1 | 12π₯2βπ₯β4=0 (Β½π₯+1)(π₯β4)=0 π₯=β2 or π₯=4 OR 12π₯2βπ₯β4=0 (Β½ π₯β2)(π₯+2)=0 π₯=4 or π₯=β2 OR π₯=βπΒ±βπ2β4ππ Β Β Β Β Β Β 2π π₯=β(β1)Β±β(β1)2β4(Β½)(β4) Β Β Β Β Β Β Β Β Β Β 2(Β½) π₯=4 or π₯=β2Β | ββ factors β π₯-values (3) ββ factors β π₯-values (3) ββsub into formula β π₯-valuesΒ |
3.1Β | 2π=4 π=2 π3=axis of symmetry ππ=π(π+π)2+π ππ=2(π+π)2+π ππ=2(πβ3)2+π 24=2(1β3)2+π π=16 ππ=2(πβ3)2+16 ππ=2(π2β6π+9)+16 ππ=2π2β12π+34Β | β 2π=4 β π=2 β ππ=2(π+π)2+π β ππ=2(πβ3)2+π β 24=2(1β3)2+π β π=16 β ππ=2(π2β6π+9)+16 β ππ=2π2β12π+34 (8)Β |
5.4.2Β | βπ₯2+3π₯β9/4<0 π₯2β3π₯+9/4>0 4π₯2β12π₯+9>0 (2π₯β3)(2π₯β3)>0 β΄π₯βπ ;π₯β 3/2 | β factors ββ answer (3)Β |