TECHNICAL MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
SEPTEMBER 2018

QUESTION 1

 

1.1

1.1.1

x(x–3)
x = 0 or x = 3

🗸 x = 0
🗸 x = 3

(2)

 

1.1.2

3x22 x 1 0  =  0    (-1 Mark for incorrect rounding)
x = b ± √b2 - 4ac
               2a
x =  – (- 2) ± (- 2 )2 - 4(3)( - 10)
                         2(3)
x = 2 ± ( - 2 )2 - 4(3)(-10)
                  2(3)
x = 2,2 or x = -1,5

🗸Formula
🗸Substitution
🗸 x = 2 , 2
🗸 x = - 1 , 5

(4)
 

1.1.3

2x2 7 x + 3 ≥ 0
(2x–1) (x– 3) <0
Critical values : 
x = ½ or x ≥3
10
x = ≤ ½ or x ≥ 3

🗸Critical values
🗸𝑥 ≤ ½ 
🗸 x ≥ 3

(3)

1.2

x2 - 4
x + 2
= (x + 2) (x - 2)
          x + 2
= x – 2
= 2 000 000 000 002 – 2
= 2 000 000 000 000
= 2 x 1012

🗸Factors
🗸Substitution
🗸 2 x 1012
(3)
1.3

2y +  x  =  3........................................ (1)
y  =  x 2   -  x........................................ (2)
Substitute (2) into (1):
2(x2 - x ) + x = 3
2x2  - 2x + x - 3 = 0
2x2 - x - 3 = 0
x - (- 1) ± √(-1)2 - 4(2) (- 3)
                       2(2)
x = - 1 o r x = 3/2
y = (1)2 - (1) o r y = (3/22 - (3/2)
y = 0   or   y =3/4

🗸Substitution
🗸STD form
🗸Substitution
🗸x = 1
🗸 x 3/2
🗸 y = 0 o r y = 3

(6)
 

OR
2 y +  x  =  3........................................ (1)
y  =  x 2   -  x........................................ (2)
Substitute (2) into (1):
2(x2 - x) + x = 3
2x2 -  2x + x - 3 =  0
2x2 -  x  - 3 =  0
(x + 1) (2x - 3 ) = 0
x = - 1 o r  x = 3/2
y = (1)2 - (1) o r y = (3/22 - (3/2)
y = 0   or   y =3/4

OR
🗸Substitution
🗸STD form
🗸Factors
🗸x = 1
🗸 x 3/2
🗸 y = 0 o r y 3/4

(6)
1.4

b2 4ac <0
(3)24(2) p <0
9 8p <0
p >9/8

🗸 b24ac < 0
🗸Substitution
🗸 p >9/8

(3)
      [21]

 

QUESTION 2

2.1        
 

2.1.1

√– 18.√– 12  √– 32.2.√– 22.3
       √– 6                 √– 2.3
3 i.√2 2√3i
     √2 .√3i
= = 6i

🗸Prime factors
🗸 i =            1
🗸 6 i

(3)
   

OR
√– 18.√– 12  √– 32.2.√– 22.3
       √– 6                 √– 2.3
= 3.2i.√3 
= 6i

OR
🗸Prime factors
🗸 i =√1
🗸 6i
 

2.1.2

log 6 + 2 log 2 0  –  log 3 – 3 log 2
log 6 + log ( 2 0 ) 2 – log 3 – log 22
= log 6 + log 400 – log 3 – log 8
= log (6 × 400)
            3 x 8
= log 100
= log 102 OR = log (1 0 × 1 0 ) = lo g 10 + log 10

= 2

🗸Power law 
🗸Addition law
🗸Subtraction law
🗸Same base law
🗸2
(5)
2.2        
 

2.2.1

 9

🗸Power rule
🗸Factors
🗸Simplification
🗸 25

 
(4) 
  2.2.2 8
5 = (1/5x-2
5 = (5 -1)x - 2
5 = 5-x-2
1 = -x + 2
x = 1
🗸Substitute 5
🗸Powers with base 5
🗸Same base rule
🗸x = 1
 
    OR
7
5 = (1/5x-2
5 =      1     
        5 x - 2x
x-2+1 = 1
x-2+1= 50
x - 1 = 0
x = 1

OR

🗸Substitute 5
🗸Zero exponent rule
🗸x = 1

(4)
  2.2.3

4 log2x 1 = log28
4 log2x  = log28 + log22
log2x4 = log216
x = 16
x4 = 24
x = 2

🗸1 = log22
🗸Simplification
🗸Equal base logs
🗸x = 2
(4)
   

OR

4 log2x 1 = log23
log2x4 1 = 3log22
log2x4 = 3 + 1 = 4
x= 24
x = 2

OR
🗸Power rule
🗸1 = log 22
🗸Exponential form
🗸x = 2

        [20]

 

QUESTION 3

3.1

3.1.1

z5  =  z1 + z2
= 2+3i+(3 – 2i)
= 1 + i

🗸-1 Real part
🗸 i Imaginary part

(2)

 

3.1.2

z6  = z5 x z3
= (1 + i )( 4 + i )
= 4 – i – 4i + i2
=3– 5i

🗸Expansion
🗸3– 5i

(2)

 

3.1.3

Output =   63 - 5i
                 z4     2 + 1
= 3 - 5i  x  2 - i
    2 + i       2 - i

= 6 - 3i - 10i + 5i 2
         4 - i2
= 1 - 13i
       5
 1  13i 
    5       5 

🗸Conjugate product

🗸Expansion

🗸Simplification

13i 
5       5 

(4)

3.2

3.2.1

|Output| = 6
= 2.61

🗸Substitution
🗸|Output|

(2)

  3.2.2  5

🗸Correct quadrant
🗸Coordinates

(2)
  3.2.3

No, the learner did not manage to cut out a circular piece, because the modulus of the output is less than 5 and the quadrant of the argument of the output is in the fourth quadrant; so a square was cut.

🗸Conclusion
🗸Modulus and Argument

(2)
        [14]

 

QUESTION 4

4.1

4.1.1

A = P( 1 - i )n
4000 = 12000 (1 - i) 30 
4

Rate = 3,6 %

🗸Formula
🗸Substitution
🗸 1 - (1/3)1/30
🗸r = 3,6%

(4)

 

4.1.2

A = P (1 - i) n
A = 12000 (1 - 0, 036) 60 
A = 1329.85 Bacteria

🗸Substitute A and i
🗸Substitute n
🗸A = 1329.85

(3)

4.2

4.2.1

18% of R600 000 = R108 000
Loan amount = R600 000 – R108 000
Loan amount = R492 000

OR

Percentage loaned = 100% - 18%
Percentage loaned = 82%

Loan amount = 82% of R600 000
Loan amount = R492 600

🗸11,9% of R600 000
🗸Loan amount

OR
🗸Percentage loaned
🗸Loan amount

(2)

 

4.2.2

A P (1 + i )n
1204860, 32 = 492000 (1 + 0,15/1212 x n 
12n = log1,0125 (1204860,32)
                             492000
n = 6years

🗸Formula
🗸Substitution
🗸Logarithm
🗸n = 6 years

(4)
       

[13]

 

QUESTION 5

5.1

q =2

🗸Accurate answer

(1)

5.2

0 = + 2
    - 2
a = 4

🗸Substitution
🗸a =4

(2)

5.3

x = 0 and y =2

🗸Horizontal asymptote
🗸Vertical asymptote

(2)

5.4

x ∈  R , but x ≠ 0 o r x  ( - ∞ ; 0 ) ∪ ( 0 ; ∞)

🗸Excluding x =0
🗸x values

(2)

     

[7]

  

QUESTION 6

6.1

A (–2; 0) and B(2; 0)

🗸 A (–2; 0)
🗸 B (2; 0)

(2)

6.2

2 = 20 + q
q = 1

🗸q =1

(1)

6.3

m = 0 - 2 = -1
       2 - 0
c = 2
y = -x + 2

🗸m = - x
🗸c =2

(2)

       

6.4

- 73 < < 0  OR  x ∈  (-73 ;0)
  50                               50

🗸Notation
🗸Values

(2)

     

[7]

Related Items

 

QUESTION 7
7.1 

f (x) = - (x - 2) 2 + 40 = - (x -  2) 2 + 4
0 = [- ( x - 2) + 2 ] [ (x -  2) + 2]
- (x - 2) + 2 = 0 o r (x - 2) + 2 = 0

OR

0 = - ( x - 2)   + 4
( x - 2)2   = 4
x - 2 = ± 2
x = 4 o r x = 0

OR

0 = - ( x - 2)2 + 4
0 = - ( x2 - 4 x + 4 ) + 4
0 = - x2 + 4 x
0 = - x ( x - 4 )
x = 4 o r x = 0

🗸 f ( x ) = 0
🗸Factors
x = 4 o r x = 0
🗸 x  =  4 o r x  =  0

OR
🗸 f ( x ) = 0
🗸Square root both sides

🗸 x  =  4 o r x  =  0

OR
🗸 f ( x ) = 0
🗸STD form

🗸 x =  4 o r x  =  0

(3)
7.2

f ( x ) = - ( x - 2 ) 2   + 4
y = - ( 0 - 2 ) 2 + 4
y = 0

🗸 y = 0 (1)
7.3  (2;4) 🗸Each coordinate  (2)
7.4   3 1

🗸Shape
🗸y-intercept🗸x-intercepts
🗸Turning point

(4)
7.5 y < 4 o r y ∈ ( - ∞ ; 4 ) 🗸Accurate answer (1)
7.6 (3;3)

🗸x-coordinate
🗸 y-coordinate

(2)
      [13]

 

QUESTION 8

 

8.1

f (1) = 2(1) 2 + (1) - 1 = 2
f (3) = 2(3) 2 + (3) - 1 = 20
Average gradient = f(3) - f (1)
                                   3 - 1
Average gradient = 20 - 2
                                  2
= 9

🗸f (1)
🗸f (3)
🗸Average gradient formula
🗸Substitution
🗸Average gradient = 9

(5)

8.2

f (x) = 3x
f ' (x) = lim f(x + h) - f (x) 
        x → 0          h
f ' (x) = lim 3(x + h) - 3x
       x → 0       h
f ' (x) = lim  3h 
        x → 0  h
f ' (x) = 3

🗸Formula
🗸Substitution
🗸Simplification
f ' (x) = 3

(4)

 

-1 Mark for incorrect notation in 8.2 or 8.3

 
8.3

8.3.1

3x - 2y = √x
y = 3x -√x
         2
y =   3x  ½ 
         2      2
dy =3 -x
dx    2   4 

🗸y = 3x -√x
         2
🗸Exponential form
🗸 3/2
🗸 x  
   4 

(4)
8.3.2 y  = 6 -   4    1  
                3√x     x4
y = 6 -   4    1   
              x1/3     x4 
y = 6 - 4x1/ + x-4
dy x4/3 - 4x-5
dx      3
dy  4   -   4      4     4  
dx    3x4/3  x5      33√x4    x5

🗸Exponential form

🗸 x4/3 
    3
🗸 - 4x - 5

🗸   4   = -   4  (positive exponents)
    3x4/3      x5 
(4)
8.4 g '( x ) =2 x + 2 = - 2
x =  - 4
g ( - 4 ) = ( - 4 ) 2 + 2 ( - 4 ) - 3
g ( - 4 ) =  5
( - 4 ; 5 )
🗸 g '(x)
🗸 g '(x) = - 2
🗸 g ( - 4 )
🗸 (- 4 ; 5)
(4)
      [21]

 

QUESTION 9
Givenf (x) = (x - 5) (x + 1)2
9.1  f (0) = (0 - 5) ((0) + 1)2 = - 5
(0; - 5)
🗸(0; - 5) (1) 
9.2 

f (5) = (5 - 5) (5 + 1) = 0
Then, (5; 0) is the x-intercept of f.
(- 1; 0) is the other x-intercept of f.

🗸 f (5) = 0
🗸 ( - 1; 0)

 
  OR

0 = (x - 5) (x + 1)
(x - 5) = 0 or (x + 1) = 0
x = 5 i s the intercept of f
( - 1;0) is the other x-intercept of f.  

🗸 f (x) = 0
🗸 ( - 1; 0)

(2) 
9.3 

f (x) = x3 - 3x2   - 9x - 5
f '( x ) = 3x2 - 6x - 9
0 = 3x2 - 6 x - 9
0 = x2   - 2x - 3
0 = (x - 3) ( x + 1 )
x = 3 or x = - 1
x = –1;
y = –1 – 3 + 9 – 5 = 0
Turning point: (–1; 0)
x = 3;
y = 27 – 27 – 27 – 5 = –32
Turning point : (3; –32)

🗸 3x2 - 6 x - 9

🗸Factors
🗸Both x values
🗸(–1; 0)
🗸 (3; –32)

(5)
9.4   2 1

🗸Shape
🗸x-intercepts
🗸y-intercept = –5
🗸Turning Point (–1; 0)
🗸Turning Point (3; –32)

 
(5)
      [13]

 

QUESTION 10

10.1

A = 6 + 4t - t 2
A = 6 + 4 (0) - (0)
A = 6 cm2

🗸Substitute 0
🗸 A =  6 cm 2

(2)

10.2

dA = 4  -  2 t
dt
Rate of increase in A at t =1: = 4 - 2 (1)
= 2 cm2

🗸 4 - 2 t
🗸Substitution by 1
🗸2 cm2

(3)

10.3

dA = 4 -  2t
 dt
dA = 4 -  2 t  =  0
dt
2t =  4
t = 2 seconds

🗸 dA =0
    dt
🗸t =2 seconds

(2)

10.4

A = 6 + 4 (2) - 22
= 10 cm2

🗸Substitution
🗸 A = 10 cm2

(2)

     

[9]

 

QUESTION 11

11.1

∫( 2 x - 4 ) dx
= x2 - 4 x + C

🗸 x2
🗸 - 4x
🗸C

(3)

11.2

1 1

=7,75 square units

🗸A1 definite integral formula
🗸Simplify A1 integral
🗸Substitution in A1
🗸A1 value
🗸A2 definite integral formula
🗸Substitution in A2
🗸A2 value
🗸 A1  + A2
🗸7,75 square units

(9)

   

[12]

 

TOTAL:

150

Last modified on Wednesday, 08 September 2021 14:02