MATHEMATICAL LITERACY PAPER 2
GRADE 12
MEMORANDUM
SENIOR CERTIFICATE EXAMINATIONS
2016

Symbol Explanation
M Method
M/A Method with accuracy
CA Consistent accuracy
A Accuracy
C Conversion
S Simplification
RT/RG Reading from a table OR a graph
SF Correct substitution in a formula
O Opinion/reason/deduction
P Penalty, e.g. for no units, incorrect rounding off etc.
R Rounding off
NPR No penalty for rounding
J Justification


QUESTION 1 [39 MARKS]

Ques Solution Explanation TL
1.1.1 Range = R62 500 – R29 890 ✓A✓M
= R32 610 ✓CA
1A correct values
1M subtracting
1CA range
AO
(3)
D
L2
1.1.2

Mean = Sum of all scores
             Number of scores 

R36586,11 = R43320 + R33100 + Z + R29730 + R46000 + R35300 + R35970 ✓M
                                                               7 ✓A
Z = 7 × R36 586,11 – R223 420✓M
Z = R32 682,77✓CA
Z ≈ R32 683✓R

1M adding all correct values
1A dividing by 7
1M subtracting
1CA simplification
1R rounding to nearest rand
AO
(5)
D
L2
1.1.3 NMMU does not offer these degree courses. ✓✓O
OR
No students attending✓✓O
OR
No students took the course✓✓O
2O reason
(2)
D
L4
1.1.4 Percentagr Increase = 2016Fee - 2015Fee × 100% ✓M
                                           2015Fee
= R69000 - R46000 × 100% ✓M
           R46000
= 50% ✓CA
50% ÷ 6,7% = 7,462686567 ✓M✓CA
The student is correct; it is more than seven times the projected inflation rate.✓O
OR
R 69 000 – R46 00 = R 23 0000 ✓M✓A
 6,7 × R46000 = R3082✓M✓A
100
R 3 082 × 7 = R 21 574 ✓CA
The student is correct ✓O
OR
6,7% × 7 = 46,9% ✓M✓A
R 46 000 × 46,9% = R 21 574 ✓A
R 46 000 + R 21 574 = R 67 574 ✓M
R 69 000 – R 67 574 = R 1 426 more ✓CA
Student is correct. ✓O

1M substituting correct values
1M calculating % increase
1CA percentage
1M dividing by 6,7%
1CA answer
1O verification
OR

1M for subtracting
1A answer
1M for multiplying
1A answer
1CA answer
1O verification
OR
1M multiplying by 7
1A answer
1A answer
1M adding
1CA subtraction
1O verification
(6)

F
L4 (6)
1.1.5 R 46 000 × 10,75 % = R 4 945 ✓M
R 46 000 + R 4 945 = R 50 945 ✓CA
R 50 945 × 10,75% = R 5 476,59
R 50 945 + R 5 476,59 = R 56 421,59
Monthly fee = R38 × 24
= R912 ✓A
Total cost of loan = R56 421,59 + R912 + R300 ✓M
= R57 633,59
Difference in amounts = R57 633,59 – R46 000
= R11 633,59 ✓O
He is correct.
OR
Total capital + interest = R46 000 × 110,75% × 110,75% ✓M✓M
= R56 421,59 ✓CA
Monthly fee = R38 × 24
= R912 ✓A
Total cost of loan = R56 421,59 + R912 + R300 ✓M
= R57 633,59 ✓CA
Difference in amounts = R57 633,59 – R46 000 ✓M
= R11 633,59
He is correct. ✓O
1M for calculating interest
1CA for principal
1CA accumulated value
1A calculating the monthly fee for 24 months
1M adding all values
1CA total cost of loan
1M subtracting the amounts
1O verification
OR
2M multiplying by 110,75%
1CA answer
1A calculating the monthly fee for 24 months
1M adding all values
1CA total cost of loan
1M subtracting the amounts
1O verification
(8)
F
L3(7)
1.2.1 Volume of fabric paint container = π × radius × radius × height 
367,38 cm3 3,142 × 3 cm ×3 cm × height ✓M✓SF
367,38 cm3 = 28,278 × height ✓CA
367,38 cm3 ÷ 28,278 = height ✓M
height = 12,9917 cm
= 129,92 mm ✓C
1M calculating radius
1SF substituting into formula
1CA simplification
1M dividing by 28,278
1C converting to mm
NPR
(5)
M
L3
1.2.2 Area of one letter E = (length × width) – (side × side × 2)
= (29,5 × 19,5) – (5,9 × 5,9 × 2) ✓M✓M
= 505,63 cm2
Amount of paint needed for one letter E = 505, 63 ÷ 10 000 × 100 ✓C✓M
= 5,0563 mℓ ✓CA
Amount of paint needed for four letter E's = 5,0561 × 4
= 20,2252 mℓ ✓CA
OR
Area of letter E = (length ×width) + ( side × side × 3) ✓M
= (29,5 cm × 13,6 cm) + (5,9 cm × 5,9 ×3) ✓M
= 505,63 cm✓CA
= 506 cm2
Amount of paint needed for one letter E = 505, 63 ÷ 10 000 × 100 ✓C✓M
= 5,0563 mℓ ✓CA
Amount of paint needed for four letter E's = 5,0561 × 4
= 20,2252 mℓ✓CA
2M using formula for two areas
1CA calculating area
1C converting to m²
1M converting to mℓ
1CA calculating paint
1CA total volume
NPR
OR
2M using formula for two areas
1CA calculating area
1C converting to m²
1M converting to mℓ
1CA calculating paint
1CA total volume
(7)
M
L3
1.2.3 Perimeter of letter E = 29,5 cm + 19,5 cm +19,5 cm + (9 × 5,9 cm)✓M✓A
= 121,6 cm✓CA
OR
Perimeter of letter E = 2 × 29,5 cm + (2 × 19,5 cm ) + (4 × 5,9 cm) ✓M✓A
= 121,6 cm✓CA
1A reading all values
1M adding
1CA perimeter
OR
1A reading all values
1M adding
1CA perimeter
(3)
M
L2

[39]

 

Related Items

QUESTION 2 [26 MARKS]

Ques   Solution  Explanation  TL
 2.1.1  Final salary = R26 578 × 12 ✓MA
= R318 936 ✓A
Gratuity
= 6,72% × final salary per year × years of pensionable service
= 6,72% × R318 936 × 33 ✓SF
= R707 272,4736
= R707 272 ✓R
OR
Final salary = R 26 578 × 6,72% ×12 × 33 ✓MA ✓MA
= R 707 272,473 ✓A
= R 707 272 ✓R
1MA multiplying by 12
1A salary
1SF substituting correct values in formula
1R rounding to the nearest rand
OR
1MA multiplying by 12
1MA multiplying by 6,72% and 33
1A salary
1R rounding to the nearest rand
(4)
F
L2
 2.1.2
(a)
 Annuity (p.a.)
= (1× final salary × years of pensionable service) + 360
   55
= (1× R26578 × 12 × 33) + 360 ✓SF
   55
= R191 721,60 ✓CA
Tax payable per annum
= R32 742 + 26% × (R191 721,60 – R181 900) ✓M✓SF
= R35 295,62 – R13 257 ✓CA
= R22 038,62 ✓CA
Annuity after tax = R191 721,60 – R22 038,62 ✓M
Monthly annuity = R169 682,98 ÷ 12 ✓M
= R14 140,25 ✓CA
 CA from answer in Q 2.1.1
1SF substituting correct values into formula
1CA calculating the annuity p.a.
1M correct tax bracket
1SF substituting correct values into formula
CA tax before rebate
1CA calculating the tax due per year
1M subtracting tax due from yearly income
1M dividing by 12
1CA monthly income after tax
(9)
F
L3
 2.1.2
(b)

 Difference in income = R26 578 – R14 140,25 ✓M
= R12 437,75 ✓CA
He cannot retire✓O

  • His reduced income may not meet all his expenses. ✓J
  • Retire at 65 years he will get more money.
  • Any other suitable reason supported with a calculation.
    OR

He can retire✓O

  • He will get the gratuity.✓J
 1M subtracting
1CA difference
1O stating conclusion
1J Any one of the listed bullets
(4)
F
L4
 2.2.1  No money for transport
= 100% – (11,0% + 8,7% + 4% + 73%)✓M/A✓MA
= 3,3%
P = 3,3% OR 0,033 OR 3,3 OR 33    ✓CA✓CA✓CA✓CA
                                      100     1000 
1MA pie chart concept
1MA adding correct values
1CA probability
AO
(3)
P
L3
 2.2.2  The number of boys with other reasons is very small and will not account for a sector on the pie chart. ✓O  2O opinion
(2)
D
L4
 2.2.3 During the examination period learners do not come to school on the days they are not writing. ✓✓O
OR
They do not prepare for the examinations.✓✓O
OR
Afraid of writing.✓✓O
OR
Studying at home.✓✓O
OR
They bunk classes.✓✓O
 2O reason
(2)
D
L4
2.2.4 The pie charts only give percentages and not actual numbers.✓✓O 2O Opinion
(2)
D
L4

[26]

QUESTION 3 [42 MARKS]

Ques Solution Explanation TL
3.1.1 Gauteng and North West ✓✓A✓✓A 2A for 1st province
2A for 2nd province
(4)
MAP
L2
3.1.2

De Hoop Limpopo ✓A✓A
Umtata Eastern Cape✓A✓A
Darlington Eastern Cape✓A✓A

Any two correct pairs 4 marks

1A correct dam
1A correct province
1A correct dam
1A correct province
(4)
MAP
L2
3.1.3 P = 5 OR 0,32 OR 31% ✓✓A✓A   ✓✓✓A   ✓✓✓A
     16
2A numerator
1A denominator
AO
(3)
P
L3
3.1.4 2014
5 340 000 megalitres × 67,9% = 3 625 860 megalitres ✓MA✓CA
2015
5 340 000 megalitres × 58,7% = 3 134 580 megalitres✓CA
Difference
= 3 625 860 megalitres – 3 134 580 megalitres
= 491 280 megalitres✓CA
= 491 280 000 kilolitres✓C
OR
67,9% – 58,7% = 9,2% ✓A
9,2% × 5 340 000 megalitres✓M
= 491 280 megalitres✓CA
= 491 280 000 kilolitres✓C
1MA multiply with %
1CA answer(2014) in megalitres
1CA answer (2015) in megalitres
1CA calculating the difference
1C conversion
OR
1M subtracting correct percentages
1A simplification
1M multiplying by 9,2%
1CAcalculating the difference
1C conversion
(5)
M
L3
3.1.5 Low rainfall ✓✓O
OR
No rainfall✓✓O
OR
Drought✓✓O
OR
Evaporation✓✓O
OR
Water usage for human activities✓✓O
OR
Bad infrastructure✓✓O
OR
Leakages✓✓O
OR
Population increases✓✓O
OR
Climatic changes✓✓O
OR
Agriculture✓✓O
OR
Global warming✓✓O
2O first reason
2O second reason
(4)
M
L4
3.2.1

3.21

One mark for every two correctly plotted points
(6)

  D
L 2
3.2.2 In the summer/high temperature the duration of the shower time decrease.✓A✓✓O
OR
In the winter/low temperature the duration of the shower time increase.✓A✓✓O
1A high temp.
2O time decrease
(3)
D
L 4
3.2.3 The authorities must provide more water in the winter months for showering as people use more water to shower in the winter months.✓✓O
OR
They can educate people not to run the water in the shower to heat up the bathroom in the winter months, but to use other heating methods.✓✓O
OR
Build bigger dams.✓✓O
OR
Educate people to save water.✓✓O
2O for any valid reason
(2)
D
L4
3.2.4 This is not a representative sample because the sample is too small.✓✓O 2O for stating that the sample is too small
(2)
D
L4
3.2.5 7 minute 10 seconds = 430 seconds ✓C
11  ✓A✓A
26
1C converting to seconds
1A numerator
1A denominator
Accept denominator of 52
Answer in decimal form full marks
(3)
P
L2
3.2.6 Winter shower duration
Lower quartile = 385✓A
Upper quartile = 410✓A
IQR = 410 – 385✓M
= 25✓CA
Summer shower duration
IQR = 29
Difference = 29 – 25 ✓M
= 4✓CA
1A reading the lower quartile
1A reading the upper quartile
1M subtracting
1CA IQR
1M subtraction
1CA difference
Accept
Lower quartile 380
Upper quartile 405
(6)
D
L3

[42]

QUESTION 4 [43 MARKS]

 Ques Solution  Explanation   HL
4.1.1 (a) Rental for 2-berth vehicle (unlimited km)
= (R1 225 + R220) × 8 ✓MA
= R11 560 ✓CA
Rental per person
= R11 560 ÷ 3 ✓M
= R3 853,33✓CA
1MA adding and multiplying
1CA rental cost
1M dividing by 3
1CA rental per person
(4)
F
L2
4.1.1 (b) Rental for 2-berth vehicle (limited km)
= (R1 050 + R220) × 7 ✓M
= R8 890✓CA
Free kilometres = 300 × 7 = 2 100✓A
Extra kilometres = 3 050 km – 2 100 km✓M
= 950 km✓CA
Cost for extra km
= 950 km × R3,50
= R3 325✓CA
Total cost
= R8 890 + R3 325
= R12 215✓CA
∴ The 8-day option is the most economical. ✓O
1M adding and multiplying
1CA rental cost
1A free kilometres
1M subtracting values
1CA extra km
1CA extra cost
1CA total cost
1O comparing and giving advice
Use Q4.1.1.(a) answer for opinion mark
(8)
F
L4
 4.1.2 Length of bed on plan = 2,010 m ÷ 80 ✓M
= 0,025125 m × 1 000
= 25,125 mm✓C
= 25 mm✓R
1M working with ratio(dividing by 80)
1C for answer in mm
1R rounding to nearest mm
AO 25mm
(3)
Map
L3
 4.1.3 4-berth vehicle
Amount of diesel used = 3 050 km × 0,1321 ℓ/km✓M
= 402,905 ℓ✓CA
Cost of diesel = 402,905 ℓ × R11,78/ℓ
= R4 746,22✓CA
2-berth vehicle
Amount of diesel used = 3 050 km ÷ 10,362 km/ℓ✓M
= 294,3447211 ℓ✓CA
Cost of diesel = 294,3447211 ℓ × R11,78/ℓ
= R3 467,38
Difference in cost = R4 746,22 – R3 467,38✓M
= R1 278,84✓CA
Maria is correct; they will be saving R1 278,84 on the cost of diesel.✓✓O
1M multiplying by rate
1CA amount of diesel used
1CA cost of diesel
1M dividing by the rate
1CA amount of diesel used.
1CA cost of diesel
1M subtracting
1CA difference
2O for stating that Maria is correct
NPR
(10)
F
L4
4.2.1 (a) Full tank can drive: 50 × 10,362 km = 518,1 km ✓M✓CA
Distance from Bloemfontein to Kimberley = 175 km✓RT
Total distance from Harrismith to Kimberley
= 337 km + 175 km
= 512 km✓CA
512 km is less than 518,1 km. ✓O
OR
Full tank can drive: 50 × 10,362 km = 518,1 km✓M✓CA
Distance on map from Kimberley to Bloemfontein = 15 mm
Scale 22 mm = 300 km / 3mm = 50 km / 9 mm = 100 km
Distance from Kimberley to Bloemfontein in km
=15mm300km = 15mm50km = 15mm100km ✓M
          22mm           3mm                 9mm
= 204,55 km       = 250 km       = 166,67 km
Total distance from Harrismith to Kimberley
= (337+ 204,55) km       = (337 + 250) km       = (337 +166,67) km
= 542,55 km                      =587 km                      = 503,67 km ✓CA
542 > 518,1                       587 > 518,1               503,67 < 518,1 ✓O
1M multiplying
1CA distance
1RT reading of distance
1CA total distance
1O conclusion
OR
1M multiplying
1CA distance
1M calculating distance using bar scale
1CA total distance
1O conclusion
Allow ± 1mm
(5)
Maps
L2
4.2.1
(b)
Distance from Kimberley to Upington = 401 km ✓RT
Scale on map: 9 mm = 100 km ✓MA
Length on map from Upington to Kakamas = 9 mm ✓M
Distance from Upington to Kakamas = 100 km✓CA
Total distance: Kimberley to Kakamas = 401 km + 100 km
= 501 km ✓CA
501 km is less than 518,1 km. ✓O

1RT reading of distance
1MA measuring scale
1MA measuring
1CA calculating the distance
1CA total
1O Stating less than 518,1 km
(6)
Maps
L4
 4.2.2  Time = Distance ÷ speed
= 1 300 km ÷ 94 km/h✓CA✓M
= 13,82978723
≈ 13 hours and 50 minutes✓CA
Time on road + breaks
= 13 hours + 50 minutes + 2 × 20 minutes + 2¼ + 180 minutes✓M
= 19 hours and 45 minutes✓CA
Time of arrival = 00:45 Tuesday✓CA✓CA
OR
Total distance from Harrismith to Springbok
= 512 km + 800 km
= 1 312 km✓CA
Distance = speed × time
1 312 km = 94 Km/h × time
Time = 13,95744681 hours✓M
= 13 hours 57 minutes✓CA
Time on road + breaks
= 13 hours + 57 minutes + 2 × 20 minutes + 2¼ + 180 minutes ✓M
= 19 hours and 45 minutes✓CA
Time of arrival = 00:52 Tuesday ✓CA✓CA
1CA distance
1M dividing by speed
1CA hours and minutes
1M adding all the times
1CA total time spent on road
1CA time of arrival
1CA day of arrival
OR
1CA distance
1M dividing by speed
1CA hours and minutes
1M adding all the times
1CA total time spent on road
1CA time of arrival
1CA day of arrival
(7)
M
L3

[43]
TOTAL: 150

Last modified on Wednesday, 02 June 2021 07:48