Mathematics Paper 2
Grade 12
Senior Certificate Examinations
Past Paper (memorandum) 2016

NOTE:

  • If a candidate answered a question TWICE, mark only the FIRST attempt.
  • If a candidate has crossed out an attempt to answer a question and did not redo it, mark the crossed-out version.
  • Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error
  • Assuming answers/values in order to solve a problem is NOT acceptable.

MEMORANDUM

 QUESTION 1

10 12 16 19  20  21   24  25 26 

 1.1 Mean = 189/11                     
Answer only: Full marks 
= 17,18 

✓189 
✓ answer   (2)

 1.2

Min = 8, max = 26 
Median = 19 
Q1 = 10, Q3 = 24 

∴ (8 ; 10 ; 19 ; 24 ; 26)

✓ min, max
✓ median 
✓ Q1 & Q3  (3)

 1.3  1.3q

✓ box
✓ whiskers   (2)

 1.4

The data is skewed to the left 

OR 

Negatively skewed

✓ answer (1) 
✓ answer (1)

 1.5 SD/SA = 6,46

✓✓ answer  (2)

 1.6

17,18 + 6,46 = 23,64 
∴ 3 destinations

✓ interval
✓ answer  (2) 
[12]


QUESTION 2

Temperature at midday (in °C)  18   21  19 26  32 35 36 40 38  30   25
 Number of bottles of water (500 mℓ)  12  15  13  31 46 51 57 70 63   53 23 

2.1  (30 ; 53)   ✓answer (1)
 2.2  a = – 38,51
b = 2,68 
∴ yˆ = 2,68x – 38,51
 ✓ value a 
✓ value b
✓ equation  (3)
 2.3  ∴ yˆ ≈ 36,53 bottles 

OR 
yˆ ≈ 2,68(28) – 38,51 
 ≈ 36,53 bottles

 ✓✓ answer (2) 

✓substitution
✓ answer (2)

 2.4  Strong
The majority of the points lie close to the regression line.

OR 

Strong
r = 0,98

 ✓ strong
✓ reason (2) 

✓strong/sterk 
✓reason (2)

 2.5

Temperature cannot rise beyond a certain point as this would be life  threatening

OR

there is only so much water one can consume before it  becomes a risk to your health (hyponatremia)./ 

✓ reason(1) 

[9]


QUESTION 3
VR5AAG 3

3.1   mAD   y2 - y1     
               x2 - x1
       =   0 - 6     
           -2 +8
   =    -6     = -1
          6
 ✓substitution
✓–1   (2)
3.2 

 mBC = -1 [BC | | AD]
y = -x + c
10 = -8 + c
c = 18
y = -x +18

OR

mBC = -1 [BC | | AD]
y - y1 = m(x - x1)
y - 10 = -(X - 8)
Y = -X + 18

✓ gradient

✓substitute m and  (8 ; 10)


✓ equation (3) 


✓ gradient 
✓substitute m and  (8 ; 10) 
✓ equation  (3)

 3.3

 mBD   y2 - y1     
               x2 - x1
       =   10 - 0     
           -8 + 2
mBD × mAD  = 1 × -1 = -1
∴ DB ⊥ AD   

OR

AD2 = 72 or AD = √72  or 6√2
AB2 = 272 or AB = √272  or 4√17
BD2 = 200 or BD = √200  or 10√2
∴ AB2 = AD2 + BD2
∴ ADB = 90º

 ✓substitution
✓ answer
✓ ⋅ mBD × mAD  = 1 × -1 = -1 (3)





✓✓ calculating all 3 sides 

✓ AB2 = AD2 + BD2  (3)

 3.4

 tan BDM = MBD = 1
∴ BDM = 45º


OR


sin BDM =   BM   =    10      =    1   
                    BD       10√2         √2
∴ BDM = 45º

 ✓ tan BDM = MBD
✓ answer  (2)

✓sin BDM =  1  
                    √2 
✓ answer   (2)

 3.5

 T (x ; y) =[ x1 + x2 ; y1 + y2]
                [    2              2     ]

= [-2 +8 /2 ; 0 +10/2]
= (3;5)
T symmetrical about BM
∴ distance T to BM = 5 units = distance from BM to C
∴ C (13;5)

OR

mDF =    31/3 - 0     1   
               8 - (-2)          3 
Equation of DF:
y - y1 =  m(x - x1)

y - 0 = 1/3 (x + 2)
y = 1/x + 2/3
Equation of BC:
y = -x + 18
1/3x + 2/= -x + 18
4x = 52
x = 13
∴ y = -13 +18 = 5
∴ C (13;5)

 ✓T(3 ; 5)
✓value of x
✓ value of y   (3)

✓eq of DF

✓value of x 

✓ value of y (3)

 3.6

 area ΔBDF = area ΔBDM - area ΔDFM
= ½ (10)(10) - ½(10)[10/3]
= 100/3 OR 33 1/3 0R 33,3 square units  

OR 

area ΔBDF = ½. BF.DM
=½ [20/3](10)
= 100/3 OR 33 1/3 0R 33,3 square units    
    

OR

tan FDM =mDC =    5 - 0      1    or tan FDM =   FM   = 10/3  1   
                              13 + 2        3                           DM        10        3
FDM = 18,43º 
∴ BDF = 103,43º    [ext ∠ Δ]
BF  = 20/3  0R 62/3
DF2 = (10)2 + 31/3)2  [pyth Δ DFM]
DF = 10,54 or √1000/3   or 10√10/3
QQ
∴area =  ½.BF.FD.sinBFD
½[(20/3)(10√10/3)](sin 108,43º)
= 100/3 OR 33 1/3 0R 33,3 square units    

OR

BF = 20/3 or  62/3
BD = √(10-0)2 + (8 + 2)2
= √200 OR 10√2
area ΔBDF = ½.BF.BD.sinDBF
= ½[(20/3)(√200)](sin 45º)
= 100/3 OR 33 1/3 0R 33,3 square units   

OR

 area Δ BDF 
=area ΔBCD - areaΔBCF
= ½ (10√2)(5√2) - ½(20/3)(5)
= 100/3 OR 33 1/3 0R 33,3 square units      
  

OR 

tan FDM =mDC =    5 - 0      1    or tan FDM =   FM   = 10/3  1   
                              13 + 2        3                           DM        10        3  
FDM = 18,43º 
BDF = 26,56º  
area Δ BDF
= ½.BD.DF.sin BDF
= ½.[(10√2)(10√10/3.sin 26,56º  
= 100/3 OR 33 1/3 0R 33,3 square units    

 ✓ formula/method
✓ 10 (DM)
✓ 10 (BM) 
✓= 10/3 OR 3 1/3    (⊥h)
✓ answer  (5) 

✓ formula/method 
✓ BF 
✓✓ DM 
✓ answer  (5)

✓ gradient/ratio 
✓ BFD 
✓ DF


✓correct substitution into area rule
✓ answer  (5) 

✓ BF
✓ BD 
✓ formula/method 
✓correct substitution into area rule 
✓ answer  (5) 

✓ formula/method
✓ BD = 10√2
✓ BC = 5√2
✓ BF = 20/3
✓ answer  (5)

✓ gradient/ratio 
✓ BDF 
✓ DF OR  BD 
✓correct substitution into area rule
✓ answer (5) 
 [18]


QUESTION 4
q4

 4.1 radius ⊥ tangent  ✓ R  (1)
 4.2

CR² = TR² + CT² (Pyth) 
CR² =  20² + 10² = 500 
CR = √500 or 10 √5

 ✓ substitution
✓ answer    (2)
 4.3

CR² = (X2 - X1)² + (Y2 -Y1)²
500 = (k - 3)² + (21 +1)²
k² - 6k + 9 + 484 = 500
k² - 6k - 7 = 0
(k-7)(k+1) = 0
k = 7   or k = -1   
      

OR

CR² = (X2 - X1)² + (Y2 -Y1)²
500 = (k - 3)² + (21 +1)²
(k - 3)² = 16
  k - 3 = 4     or k - 3 = -4
        k = 7   or k = -1

✓ substitution 
✓ standard form 
✓ factors 
✓ k = 7             (4) 


✓ substitution 
✓ square form 
✓ square root 
✓ k = 7               (4)

 4.4 (x - 3)² + (y + 1)² = 100     ✓✓ answer      (2)
 4.5  CS = 10 and CS ⊥ PS 

∴S(3; −11) 
∴y = – 11

✓S(3; −11) 
✓ answer    (2)

4.6.1

 S(3;-11)
∴ 3(-11) - 4x = 35
x = -17
∴ P(-17;-11) 

OR

4/3x + 35/3 = -11
4/3x = -68/3
x = -17
∴ P(-17;-11) 

✓ substituting

✓ answer (2)

✓ equating


✓ answer  (2)

4.6.1

 PT = PS [tangents from common point] 
= 17 + 3 = 20 units

OR

YEA
= √500   or 10√5
PT² = PC² - TC² [Pyth th]
= 500 - 100
= 400
∴ PT = 20
   

OR

YEA
= √500   or 10√5
ΔPTC = ΔRTC [90ºHS]
∴ PT = TR
∴ PT = 20      

✓ S ✓R
✓ answer     (3)

✓ value of PC 
✓ using Pyth
✓ answer     (3) 

✓ value of PC
✓ S/R or proved 
✓ answer   (3)

 4.7.1  M(3;−16) ✓answer  (1)
 4.7.2  Radius = 4 ✓ answer  (1)
 4.7.3 r1 + r2 = 10 +4 = 14
distance CM = yeea 2
= √225
= 15
CM >  r1 + r2
Therefore the two circles do not intersect or touch

✓r1 + r2

✓ 15 
✓explanation   (3) 
[21]

QUESTION 5
Q5

 5.1.1(a)  sin T = 1/√5√5/5 = 0,45 ✓value   (1)
 5.1.1(b) cos S = 3/√10 = 3√10/10 = 0,95 ✓value (1)
 5.1.2 cos (T + S) = cosTcosS - sinTsinS
yea 3
= 6/√50 - 1/50
= 5/√50  or  1/√2 or √2/2

✓expansion
2/√51/√10 

✓ simplification 
✓ answer  (5)

 5.2                    1                    - tan2(180º + θ)
cos(360º - θ)sin(90º - θ)
=                    1                    - tan2 θ
             (cos θ)(cos  θ)
=                    1                    - (sin2 θ)
                  (cos2    θ)                 (cos2    θ)
 1 - sin2 θ  
        cos2    θ
 cos2   θ     or    1 - sin2 θ          
     cos2    θ             1 - sin2 θ                   
    

✓cosθ
✓cosθ

✓tan2 θ 

sin2 θ  
  cos2    θ     

✓identity 

✓ answer (6)

 5.3 (sin x - cos x)2 = [3/4]2
sin²x - 2sinxcosx + cos²x = 9/16
1 - 2sinxcosx = 9/16 
2sinxcosx7/16
∴sin2x = 7/16  
 

✓ squaring both   sides
✓expanding LHS
✓ using identity 
✓ simplifying 

✓answer    (5) 
 [18]

QUESTION 6

6.1  4sinx + 2 cos 2x = 2 

2sinx + cos 2x - 1 = 0 
2sinx +  (1 - 2sin²x ) - 1 = 0 

2sin²x -  2sinx = 0 
2sinx (sin x - 1) = 0 
2sin x = 0 or sin x - 1 = 0 
sin x = 0        sin x = 1 

x = k.180º   or x = 90º +k.360,k∈Z

✓using identity 
✓ standard form 
✓ factors 
✓sin x = 0 or   sin x =1 

✓ k.180° 
✓ x = k.180º   or x = 90º +k.360,k∈Z
(6)

 6.2.1 Q6  ✓ turning point 

 (–90° ; –3)  
✓ turning point 
 (90° ; 1) 
✓ (–180° ; –1) &  (0° ; –1)

 6.2.2

(−90°;0°) 
OR
− 90°< x < 0°

✓ ✓ answer   (2) 

✓ ✓ answer (2)

 6.2.3  f(x) = g(x)
∴ -180º ; 0º; 90º; 180º
f(x +30º) = g(x + 30º)
∴x = -30º; 60º ; 150º
✓ any ONE correct
✓ other 2 correct   (2)
[13]

QUESTION 7
Q7

7.1 

ABD = θ   [alternate∠s ; || lines] 
cos  θ = BD  = 64  
             AB      81
θ = 38º

OR
sin BAD = 64  
              81
BAD = 52,18º
θ = 38º

✓correct trig ratio
✓substitution into 
correct ratio
✓ answer (to the  nearest degree) (3)

 

✓correct trig ratio 
✓substitution into correct ratio 
✓ answer (to the nearest degree) (3)

7.2  BC² = AB² + AC² - 2(AB)(AC)cosBAC
=81² + 87² - 2(81)(87)cos82,6º
=12312,754.....
BC = 110,97m
✓use cosine rule
✓correct substitution  into cosine rule

✓answer (3)

 7.3 sinDCB   = sinBDC  
    BD            BC
sinDCB =  BD.sinBDC  
                         BC
sinDCB = 64.sin110º
                  110,97
∴DCB = 32,82º

✓ use sine rule
✓ substitution
✓ answer (3) 
[9]

QUESTION 8
8.1            
Q8

 8.1.1 P = 32º [opp ∠ s of cyclic quad 

✓ S
✓ R (2)

 8.1.2

 O1 = 2(32º) = 64º [∠centre = 2∠ at circum   ]

OR

reflex O = 296º [∠centre = 2∠ at circum]
O1 = 64º   [∠s around a point] 
   

✓ S ✓R    (2)

✓ S and R 
✓ S  (2)

 8.1.3 OMS = 180º -(32º +18º +43º)    [sum ∠ sΔ]   
= 87º
✓ S
✓ S  (2)
 8.1.4  R3 = TMP
= 87º + 18º - 6º
        =99º  
✓ R
✓ S    (2)


8.2          
Q82

 8.2.1 corres ∠s; AB| | DC 

✓ R (1)

 8.2.2

E2 = x [tan - chord theorem]
B2 =  x [∠s opp = sides]
E3 =  x [alt ∠s ; AB|| DC]
DAB =  x [opp ∠s ||m  OR alternate ∠ BC || AD]

  Any 3  ∠s correct 

✓S ✓R
✓ S ✓ R
✓ S ✓ R    (6
 8.2.3

D = 180º - x  [co - int ∠s suppl ; AD ||   BC]
∴ B2 + D = 180º
∴ ABED a cyc quad    [converse opp ∠s of cyclic quad]

OR

DAB = x       [OPP ∠s ||m]    OR  [alt ∠s ; BC|| AD]
  E3 = DAB = x
∴ ABED a cyc quad    [converse ext ∠ of cyclic quad]

✓S ✓ R
✓ R (3)

✓S ✓ R 
✓ R (3)
[18]


QUESTION 9

 9.1 … in the alternate segment

✓ answer (1)

9.2       
Q92

 9.2.1   A1 = D1        [tan chord theorem]
B4 = A1 + D2      [ext ∠ Δ]
=D1 + D2 
✓S ✓ R
✓ S ✓ R    (4)
 9.2.2 B4 = B2    [vert opp ∠s]
D1 + D2 = B  [proven]
=G2 [∠s in same segment]
∴ AGCD is cyc quad  [converse ext ∠ cyc quad]
✓ S
✓ S ✓ R
✓ R    (4)
 9.2.3 D1 = A2   [∠s in same segment]
A2 = F      [∠s in same segment]
∴ D1 = F
∴ DC = CF    [side opp ∠s ]
✓ S ✓ R
✓ S
✓ R (4)
[13]


QUESTION 10
Q10

10.1  Constr:
Draw line BC such that MB = AK and MC = AF
Proof:
In ΔBMC and ΔKAF 
MB = AK         [constr]
M = A              [given]
MC = AF         [constr]
ΔBMC = ΔKAF     [s∠s]
∴MBC = AKF  or MCB = AFK  [ΞΔ]
but V = K  or   T = F      [given]
∴MBC = V or MCB = T
But these are corresponding ∠s
∴ BC || VT      [corr∠s≡]
MV  =  MT          [prop theorem; BC ||  VT]
  MB       MC
but MB = AK and MC = AF   [const]
MV = MT
   AK     AF  

✓ constr/konstr

✓ S / R 
✓ S


✓ S 

✓ S / R 

✓S ✓R   (7)

10.2        

Q102

10.2.1 (a)  In ΔKGH and ΔKEF
K is common
H2 = F  [ext ∠ CYCLIC QUAD]
G3 = E  [sum∠s Δ or ext∠cyclic quad]
∴ ΔKGH ||| ΔKEF   [∠∠∠]
✓ S
✓S ✓R 
✓ naming third   angle OR ∠∠∠
(4)
 10.2.1 (b)   EF  KE      [||| Δs]
  GH     KG
∴  EF  = KE  
   GH     EF       [KG = EF]
∴ EF2 = KE.GH
✓ S
✓ S   (2)
 10.2.1 (c)   KG  EM      [prop theorem ; MG || EK]
  KF      EF
but EF = KG    [given]
  KG  EM      
  KF      KG
KG2 = EM.KF
✓ S ✓ R
✓ S  (3)
 10.2.2  KE.GH = EM.KF
EM = 20 × 4 
             16
=5 units
✓ KE.GH = EM.KF
✓ substitution
✓ answer    (3)
[19]

 TOTAL: 150

Last modified on Tuesday, 15 June 2021 08:15