Thursday, 23 September 2021 06:34

MATHEMATICS PAPER 2 GRADE 12 MEMORANDUM - NSC PAST PAPERS AND MEMOS MAY/JUNE 2019

Share via Whatsapp Join our WhatsApp Group Join our Telegram Group

MATHEMATICS PAPER 2
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
MAY/JUNE 2019

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
  • Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
  • Assuming answers/values in order to solve a problem is NOT acceptable.
GEOMETRY
A mark for a correct statement
(A statement mark is independent of a reason) 
R A mark for the correct reason
(A reason mark may only be awarded if the statement is correct) 
S/R Award a mark if statement AND reason are both correct 


QUESTION 1

1.1

45 children

🗸answer (1)

1.2

13= ∑fx (4 x 2) + (8 x10) + (12 x 9) + (16 x 7) + ( 20 x 8) + (24 x 7) + (28 x 2)
        n                                                     45
13 = 692 OR 13 = 15,38 minutes      Answer only: full marks
       45

🗸692
🗸answer
(2)

1.3

 

🗸first 4 cum freq correct
🗸last 3 cum freq correct
(2)

 

Time taken (t) (in minutes)

Number of children

Cumulative frequency

 

2 < t ≤ 6

2

2

6 < t  10

10

12

10 < t  14

9

21

14 < t  18

7

28

18 < t ≤ 22

8

36

22 < t  26

7

43

26 < t  30

2

45

1.4  1  

1.5

On graph at the y-value of 22,5 or 23
Median = ± 15 minutes.       Answer only: full marks

🗸 graph
🗸 answer
(2)

   

[10]

 

QUESTION 2

2.1

a = 12,44
b = 0,98
y = 12,44 + 0,98x
Answer only: full marks

 

🗸 value of a
🗸 value of b
🗸 equation

 

(3) 

2.2.1

Percentage =15 x 100
                     50
= 30%

🗸answer

(1)

2.2.2

y = 12,44 + 0,98x
y = 12,4 4 + 0,98(30)
yˆ = 41,84
= 42             Answer only: full marks
OR

y = 41,87 (if using calculator)
y = 42 

OR

= 21 
      50

🗸 substitution of 30
🗸 answer as integer
🗸 value of y 
🗸 answer as integer
🗸 🗸 answer
(2)
(2)
(2)

2.3.1

standard deviation =13,88

🗸 🗸 answer

(2)

2.3.2

x = 50,67 - 45,67
= 5%

Answer only: full marks

🗸 50,67 - 45,67
🗸 answer

(2)

   

[10]

 

QUESTION 3
2

3.1.1

Midpoint of EC:
= (-2 + 2 ; 0 + (-3)) = (0 ; - 3)
         2          2                   2

🗸 x value 🗸 y value
(2)

3.1.2

mDC  = - 3 - (-5) OR - 5 - (-3)
                2-(-2)           -2-2
== 1                            Answer only: full marks
   4    2

🗸 substitution
🗸 answer
(2)

3.1.3

mAB = ½  [AB || DC]
y = ½ x + c                                  y - y1= ½(x - x1)
0 =½ (-2) + c           OR               y - 0 = ½ (x - (-2))
c =1
∴ y = ½ x + 1

🗸mAB 
🗸 substitution of ( - 2 ;0)
🗸equation
(3)

3.1.4

tan a = mAB = ½
a = 26,57°
θ = 90° + 26,57°      [ext ∠ of Δ]
=116,57°

🗸 tan a = ½
🗸 value of a
🗸 value of q
(3)

3.2

B(0 ; 1)
mBC = 1 - (-3)   OR mBC = (-3) - 1
              0-2                           2-0
= -2                                      = -2
mAB x mBC  = ½ x -2
= - 1
∴ AB ⊥ BC

🗸 coordinates of B
🗸 mBC = - 2
🗸 product of gradients = –1

(3)

3.3.1

ABˆ C = 90°
∴ EC is diameter [converse : ∠ in semi circle]
∴ centre of circle= æ 0 ; - 3
                                        2

🗸 answer
(1)

3.3.2 x - 0 2 +( y  3  )2= r2
                      2
(- 2 - 0) 2 +(0 + )2 = r 2OR (2 - 0 2 ) +(- 3 - (-3 ))2 = r
                          2                                              2 
OR   (0 - 0)2  + (1- (-3 ))2 = r 2
                                2 
OR r = EC = √(-2 - 2)2 + (0 - (-3))2
             2                    2 
OR r = 1 - (- 3)
                    2
∴r 25  or r =
           4            2 
x2 + (y +  )2 25  
                2           4

🗸 substitution of centre
🗸 correct substitution of E(–1 ; 0), B(0 ; 1) or
C(2 ; –3) to calculate
r 2 or r
🗸 value of r 2 or r
🗸 equation
(4)

    [18]

 

QUESTION 4
3

4.1

(x - 2)2 + ( y -1)2 = 25               (x-2)2 + (y-1)2= 25
(-2 - 2)2 + (b - 1)2 = 25            (-2-2)2 + (b-1)2 = 25 
(b -1)2 = 9                     OR     16+b2 - 2b + 1 = 25
b - 1 = ± 3                                 b2 -2b - 8 = 0
∴ b = 4      or b ≠ - 2                   ∴ b=4 or b ≠ -2

🗸 equation of the circle
🗸substitution of point T
🗸simplification
🗸 answer
(4)

4.2.1

K(2 ; 1 – 5)
∴ K(2 ; –4)            Answer only: full marks

🗸 x value 🗸 y value
(2)

4.2.2

mMT   =4 -1  =-
           -2 -2      4
mPL=        [radius ^ tangent]
          3
y = x + c
      3
4 = (-2) + c
      3
c = 20 
       3
y = x + 20 
      3        3

OR
mMT   =4 -1  =-
           -2 -2      4
mPL=        [radius ^ tangent]
          3
y - y1 =  (x - x1)
              3
y = 4 = (x + 2) 
            3
y = x + 20 
      3        3

OR

P(–11 ; –8)

mPL =  4 - (-8)  
          - 2 - (-11)
= 4 
   3
y = x + c
      3 
- 8 =(-11) + c
        3
c = 20 
      3
y = x + 20 
      3        3

🗸 mMT

🗸 mPL =
              3
🗸 substitution of mPL and the point T
🗸 equation (4)

🗸 mMT

🗸 mPL =
              3
🗸 substitution of mPL and the point T
🗸 equation (4)

(4)

🗸 coordinates of P

🗸 mPL =
              3
🗸 substitution of mPL and the point T
🗸 equation (4)

(4)

4.2.3 yL (2) +  20  = 28 
        3             3      3 
L(2; 28) and K(2; -4): LK = 28  -(-4)= 40 
        3                                  3             3 

Coordinates of P:
4

OR
yL (2) +  20  = 28 
        3             3      3 
L(2; 28) and K(2; -4): LK = 28  -(-4)= 40 
        3                                  3             3 

Coordinates of P:
5

tanθ = ∴θ = 17.1027...º
          13
∴ PKL = 90º + 17.1027...º = 107.1º
Area ΔPKL= ½ (PK)(LK). sinPKL
=½(√185)(40)sin107.10º
                 3
= 86.67 square units

🗸 yL= 28 
            3
🗸 length of LK 
🗸 xP 🗸 yP
🗸 length of ⊥ height
🗸 substitution into the area formula
🗸 answer
(7)

🗸 yL= 28 
            3
🗸 length of LK 
🗸 xP 🗸 yP
🗸 PKL
🗸 substitution into the area
🗸 answer
(7)

4.3

The centres of the two circles lie on the same vertical line
x = 2. and the sum of the radii = 10
n -1 = 10                                 1 - n = 10
n =11                or                   n = - 9
Answer only: full marks

🗸 correct method
🗸 sum of radii = 10
🗸 n =11 🗸 n = - 9
(4)

    [21]

  

QUESTION 5

5.1.1

sin191°
= - sin11°

🗸 - sin11°
(1)

5.1.2

cos 22°
= cos(2 ´11°)
= 1 - 2sin 211°

🗸 answer
(1)

5.2

cos(x - 180°) + √2 sin (x + 45°)
= - cos x + √2(sin x cos 45° + cos x sin 45°)
= - cos x + √2(sin x()) + cos x ())
                               √2                 √2
= - cos x + sin x + cos x
= sin x

OR
cos(x - 180°) + √2sin (x + 45°)
= - cos x + √2(sin x cos 45° + cos x sin 45°)
= - cos x + √2(sin x( 2 )) + cos x ( 2 ))
                               √2                 √2
= - cos x + sin x + cos x
= sin x

🗸 - cos x 🗸 expansion
🗸 special angle ratios
🗸simplification of last 2 terms
🗸answer
(5)

🗸 - cos x 🗸 expansion
🗸 special angle ratios
🗸simplification of last 2 terms
🗸answer
(5)

5.3

sin P + sin Q = sin P + cos P
(sin P + cos P)2  = ( 7 )2
                                5
sin 2 P + 2 sin P cos P + cos2 P = 49 
                                                      25
2 sin P cos P = 49 - 1
                         25
sin 2P =(49 - 25)
              25    25 
= 24 
   25

🗸 sin Q = cos P
🗸 squaring
🗸 expansion
🗸 sin 2 P + cos2 P =1
🗸answer
(5)

   

[12]

 

QUESTION 6

Related Items

6.1

cos(x - 30°) = 2 sin x
cos x cos 30° + sin x sin 30° = 2 sin x
√3 cos x + ½ sin x = 2 sin x
 2
√3 cos x = sin x
2               2
tan x =√3
            3
x = 30° + k.180°;  k ∈ Z

OR
x = 30° + k.360° or x = 210° + k.360° ; k ∈ Z

🗸 expansion
🗸 special ∠ s

 

🗸 simplification
🗸 equation in tan
🗸 30°
🗸 k.180°; k ∈ Z

OR

🗸 30° and 210°
🗸 k.360° ; k ∈ Z
(6)

6
6.2.1(a) A(120º;0)  🗸answer
(1)
6.2.1(b) C(- 150° ; - 1)

🗸 x value 🗸 y value
(2)

6.2.2(a) x ∈ (-90° ; 30°) OR - 90° < x < 30°

🗸 endpoints
🗸 correct interval
(2)

6.2.2(b) x ∈ (- 160° ; 20°) OR   -160° < x < 20°

🗸endpoints
🗸correct interval
(2)

6.2.3

y = 22 sin x +3
Range of y = 2 sin x + 3 : y ∈ [1 ; 5] OR 1 ≤ y ≤ 5
Range: y = 22sinx+3 : y ∈[2 ; 32] OR 2 ≤ y ≤ 32
Answer only: full marks

🗸 1 🗸 5
🗸 2 🗸 32
🗸 correct interval
(5)

    [18]

 

QUESTION 7
7

7.1.1

sinq =   x                sinθsin90º
            AC   OR       x          AC

AC =   x              AC =   x  
         sinθ                    sinθ

🗸 trig ratio
🗸 simplification
(2)

7.1.2

cos 60° = x + 2            sin30 = sin90º
                 CE     OR     x + 2     CE
CE =  x + 2                   CE =  x + 2 
        cos 60°                           sin30º
= x + 2 = 2(x + 2)             =2(x + 2)
     1 
     2

🗸 trig ratio
🗸 making CE the subject
(2)

7.2

Area ΔACE =  ½ AC.EC.sin ACE
= ½(  x  )(2(x + 2))sin 2q
       sinθ
= x(x + 2) x 2 sinq cosθ
              sinθ
= 2x(x + 2)cosθ

🗸 use area rule correctly
🗸 substitution of
x    (2(x + 2)) sinθ
🗸 substitution of sin 2θ
(3)

7.3

EC = 2(12 + 2) = 28
AE2 = AC2 + EC2 - 2(AC)(EC)cosACE
=(  12   )2 + 282 - 2(   12   )(28)cos110°
   sin 55°                 sin 55°
AE = 35,77m

🗸 EC
🗸 use cosine rule correctly
🗸 substitution
🗸 answer
(4)

    [11]

 

QUESTION 8 
8
 

8.1.1(a)

MOS= 62°  [∠ at centre = 2´ ∠ at circumf]

🗸S 🗸 R
(2)

8.1.1(b)

L = 31°        [equal chords; equal  ∠s]

🗸S 🗸 R
(2)

8.1.2

LN = NP and LO = OM
ON = ½ PM            [ midpoint theorem]
ON = ½ MS            [PM = MS]

OR
N1 = 90°  [line from centre to midpt chord]
P = 90°   [∠ in semi-circle]
L is common
ΔNLO ||| Δ PLM (∠∠∠)
NLNO = ½
PL    PM  
ON = ½PM
ON = ½MS  [PM = MS]

🗸LO = OM
🗸S 🗸 R
🗸S
(4)

🗸S R
🗸S/R
🗸S
🗸S
(4)

9

8.2.1

AN = AK [line || one side of D OR prop theorem; KN ||BM
AM   AB
AN3y = 3 
AM    5y    5

🗸R 

🗸S
(2)

8.2.2

AM = 10x     [given]
MC    23x
AM = 5 y =10x    \    y = 2x
LC = MC      [line || one side of D OR prop theorem; KN ||LM
KL    NM
= 23x = 23x = 23 
    2y     4x       4

OR
AM = 10x        [given]
MC    23x
AN3y 6x
MN    2y   4x
LC = MC      [line || one side of D OR prop theorem; KN ||LM
KL    NM
23x = 23x = 23 
    2y     4x       4

🗸S
🗸R
🗸S
(3)

OR

🗸S
🗸R
🗸S
(3)

   

[13]

 

QUESTION 9
10

9.1

B1 = x       [∠ s  opp = sides]
M2  = 2x           [ext∠ of ∆]    OR   Mˆ 1 =180° - 2x  [∠s of ∆]
BM = MN       [ 2 tans from a common point]
N   = 180° - 2x = 90° - x          [ ∠s  opp = sides]
               2

OR
NM = BM [ 2 tans from a common point]
B2  = N1   [ ∠'s  opp = sides] B1  = x     [ ∠'s  opp = sides] In ∆ KBN
x + x + B2  + N1 =180° [sum of  ∠'s  of ∆]
2x + 2N1 =180°
x + N1  = 90°
N1 = 90° - x

🗸S
🗸S 🗸R
🗸S 🗸R
🗸answer
(6)

🗸S 🗸R
🗸S 🗸R
🗸S
🗸answer
(6)

9.2

MBA  = B2 + B3 = 90°   [tangent^diameter]
B3= 90° - B2
= 90° - (90° - x) = x
B3 = Kˆ  =  x
AB is a tangent converse tan-chord theorem

OR
B2  = N1
B1 + B2 = x + (90° - x) = 90°
KN is diameter [converse ∠ in semi-circle
MBA  = B2  + B3  = 90°    [tangent ^diameter]
AB is a tangent converse tan-chord theorem

🗸S 🗸R
🗸S
🗸S
🗸R
(5)

    [11]

 

QUESTION 10 
11

10.1

Constr: Let M and N lie on AB and AC respectively such that
AM = DE and AN = DF. Draw MN.

Proof:
In ∆ AMN and ∆ DEF
AM = DE [Constr]
AN = DF [Constr]
A = D       [Given]
Δ AMN º Δ DEF(SAS)
AMˆ N = E = B
MN || BC [corresp ∠s are equal]
AB = AC       [line || one side of D OR prop theorem; MN ||BC]
AM   AN
AB = AC    [AM = DE and AN = DF]
DE    DF

🗸Constr
🗸Δ AMN Ξ Δ DEF
🗸SAS
🗸MN || BC and R
🗸ABAC 🗸R
   AM   AN
(6)

12

10.2.1(a)

DOˆ B= 90°
DGˆ F= Gˆ 3  + Gˆ 4  = 90°    [∠ in semi-circle]
DOˆ B+ DGˆ F=180°
DGFO is a cyclic quad.      [converse: opp ∠s of cyclic quad] OR
∠s of quad = 180°/Ðe van koordevh = 180°]

OR
EOB= 90°
DGF= G3  + G4  = 90°    [∠ in semi-circle]
EOB = DGF
DGFO is a cyclic quad.   [converse: ext ∠ = opp int ∠
OR
ext∠ of quad = opp int ∠]

🗸S 🗸R
🗸R
(3)

🗸S🗸 R
🗸R
(3)

10.2.1(b)

F1   = D          [ext ∠ of cyclic quad]
G1  + G2  = D    [tan-chord theorem]
F1  = G1  + G2
GC = CF      [ sides opp equal ∠s]

🗸S 🗸R
🗸S🗸 R
🗸R (5)

 

10.2.2(a)

AB = DE = 14                        [diameters]
OB = 7 units
BC = OC – OB = 11 – 7          Answer only: full marks
= 4 units

🗸S
🗸S
🗸S
(3)

10.2.2(b)

In Δ CGB and Δ CAG
G = A =  x        [tan-chord theorem]
C = C     [common]
∆CGB ||| ∆CAG     [∠∠∠]
CGCB
CA    CG
CG =
18    CG
CG 2 = 72
CG = √72 or 6√2  or 8,49 units

🗸S/R

🗸S

🗸S

🗸CA = 18

🗸answer

(5)

10.2.2(c)

OF = OC – FC
= 11 – √72
tan E = OF 
            OE
= 11 - √72 = 0,36
        7
E = 19,76°

OR
OF = OC – FC
= 11 – √72
FE2 = OE 2 + OF2
= 72 + (11 - √72)2
FE = 7,437.. = 7,44
cos E = OE         OR        sin E = OF 
             FE                                    FE
=   7   = 0,94                 = 11 - √72 = 0,338
   7,44                                  7,44
E = 19,76°                      E = 19,76°

🗸OF
🗸trig ratio
🗸substitution
🗸answer
(4)

🗸OF
🗸trig ratio
🗸substitution
🗸answer
(4)

   

[26]

TOTAL : 150

Last modified on Thursday, 23 September 2021 09:32