TECHNICAL MATHEMATICS
PAPER 2
GRADE 12
NSC EXAMS
PAST PAPERS AND MEMOS JUNE 2019
NOTE:
MARKING CODES | |
M | Method |
MA | Method with accuracy |
A | Accuracy |
CA | Consistent accuracy |
S | Simplification |
SF | Substitution into the correct formula |
R | Rounding penalty |
RE | Reason |
ST | Statement |
SR | Statement and correct reason |
QUESTION 1 | |||
1.1 | ✔ SF/A | (2) | |
1.2 | mAB = 2-(-1) | ✔ SF/A | (2) |
1.3 | mCD = mAB = 3/2 AB ? CD | ✔ ST | (3) |
1.4 | ✔M | (2) | |
1.5 | 1 = yD - 1 2 yD - 1 = 2 yD = 3 | ✔M | (2) |
[11] |
QUESTION 2 | |||
2.1.1 | x2 + y2 = r2 | ✔SF/A | (2) |
2.1.2 | mPQ = 5 | ✔A gradient PQ | (4) |
2.2.1 | 9x2 + 16y2 = 144 | ✔A LHS/LK ✔A RHS/RK = 1 | (2) |
2.2.2 | Major axis = 8 Minor axis = 6 | ✔CA | (2) |
2.2.3 | ✔CA both x-intercepts/ | (3) | |
[13] |
QUESTION 3 | |||
3.1 | cosec100 ° | ✔✔A R | (2) |
3.2.1 | ✔A (-tan θ) | (7) | |
3.2.2 | ✔A cos x | (4) | |
3.3 | ✔A tan 45° = 1 | (4) | |
[17] |
QUESTION 4 | |||
4.1.1 | ✔A sin θ S | (4) | |
4.1.2 | ✔CA −½ | (3) | |
4.2 | 2sinθ - cosθ = 0 | ✔A tanθ = ½ | (5) |
[12] |
QUESTION 5 | |||
5.1 | BHL = 180º - (90º + 40º) | ✔A | (1) |
5.2 | In BHL | ✔M | (2) |
5.3 | ✔M | (3) | |
5.4 | ΔALB = ½AL × LB.sinALB | ✔M | (3) |
[9] |
QUESTION 6 | |||
6.1 | f(x) = 2 c0s x and g(x) = sin(x - 30º) | ||
f: | (6) | ||
6.2 | Amplitude f = 2 | ✔A | (1) |
6.3 | Period g = 360° | ✔A | (1) |
6.4 | x∈(0º;30º) or x∈[210º;360º] | ✔CA end points | (4) |
[12] |
QUESTION 7 | |||
7.1.1 | Perpendicular | ✔A | (1) |
7.1.2 | Equal | ✔A | (1) |
7.1.3 | Supplementary | ✔A | (1) |
7.2 | |||
7.2.1 | Let DO = x cm | ✔M Apply Pyth | (4) |
7.2.2 | tanDOB = 15 | ✔M | (3) |
7.3 | |||
7.3.1 | RS is a tangent, because it touches the surface at one point only. | ✔A tangent | (2) |
7.3.2 | DBC = 40º tan-chord thm | ✔ST ✔RE | (3) |
7.3.3 | D3 = 90º - (D2 + D1) tan⊥rad | ✔ST ✔RE | (3) |
7.3.4 | BDS = 80º | ✔ST | (3) |
[21] |
QUESTION 8 | |||
8.1 | TQ = MR prop theorem; TM//QR | ✔ST | |
8.2.1 | CE = 1 prop theorem; TE//AD | ✔ST | (2) |
8.2.2 | DE = AT = 2 prop theorem; AD//TE | ✔SR ✔RE ✔S | (4) |
8.2.3 | BD = DE D as mid-pt BE, proved | ✔ST ✔RE | (4) |
8.2.4 | ✔M | (3) | |
[17] |
QUESTION 9 | |||
9.1 | 4h2 - 4dh + x2 = 0 4h2 - 4(10)h + 82 = 0 4h2 - 40h + 64 = 0 h2 - 10h + 16 = 0 (h - 2)(h - 8) = 0 h = 2cm & 8cm | ✔ A formula | (5) |
9.2.1 | s = rθ
| ✔A formula | (4) |
9.2.2 | Length of belt = 165 + 130 × 2 + 401 = 826 cm | ✔M | (2) |
9.3.1 | ✔A formula | (4) | |
9.3.2 | ✔A formula | (5) | |
[20] |
QUESTION 10 | |||
10.1.1 | ✔A | (1) | |
10.1.2 | Volcone = 1 Volcylinder or Volcylinder = 3Volcone | ✔A | (1) |
10.1.3 | ✔ST | (2) | |
10.1.4 | Vcone = 1 πr2h | ✔A SF ✔S | (2) |
10.1.5(a) | ✔M ✔A SF ✔S ✔S | (4) | |
10.1.5(b) | r2 = 3h2 | ✔ A SF | (2) |
10.2.1 | ✔A formula | (3) | |
10.2.2 | Shaded region = Tot_rect_region - map_region | ✔ A Area total region ✔ CA Area | (3) |
[18] | |||
TOTAL: | 150 |