Physical Sciences (Physics)
Paper One (P1)
Grade 12
Amended Senior Certificate Exam Past Papers And Memos
May/june 2016

Memorandum

QUESTION 1 
1.1 A✓✓ (2)

1.2 B✓✓ (2)
1.3 D✓✓ (2)
1.4 C✓✓ (2)
1.5 B✓✓ (2)
1.6 B✓✓ (2)
1.7 A✓✓ (2)
1.8 D✓✓ (2)
1.9 C✓✓ (2)
1.10 D✓✓ (2)

[20]

QUESTION 2 

2.1 A body will remain in its state of rest or motion at constant velocityunless a resultant/net force✔ acts on it. 
OR
Every body continues in its state of rest or of uniform motion in a straight lineunless a resultant/net force ✔acts on it.  (2) 

2.2 0 (N)✔/zero/nul (newton) 
NOTE: No penalisation if the unit is omitted  (1) 

2.3 

Accepted labels

w

Fg / Fw / weight / mg / gravitational force

T

FT / tension  
Fs / spanning 

15 N 

Fa / F15N / Fapplied / Ft / Ftoegepas / F

                                                               Accept

OR
2.3 ANS PH          
(3) 

Notes

  • Mark awarded for label and arrow
  • Do not penalise for length of arrows since drawing is not to scale.
  • Any other additional force(s) Minus 1 (-1) mark
  • If force(s) do not make contact with body: Minus 1 (-1) mark
  • Minus 1 mark if all arrows are omitted but correctly labelled 

2.4        (7) 

2 kg block
Fnet = ma 

Fa + Fg + (-T) = ma 
Fa + mg + (-T) = ma (upto to this point ✔ )
[15 + (2)(9,8) – T]✔ = (2)(1,2)✔ 
      T = 32,2 N 

10 kg block
T + (-fk) = ma 

T - μkN = ma 
T - μkmg = ma ✔ 
32,2 - (μk)(10)(9,8)✔ = (10)(1,2)✔ 
μk = 0,21✔ 

NOTE:L
If fk is calculated separately – award one mark. 

Massless string approximation/Systems approach (4/7) 
Fnet = ma✔ 
FA – fk + w = (M + m)a 
15 – μkMg + mg = (M + m)a 
15 - μk(10(9,8) + (2)(9,8)✔ = (10 + 2)(1,2)✔  
           μk = 0,21✔

2.5 Smaller than  ✔ (1) 
2.6 Remains the same ✔   -   The coefficient of kinetic friction is independent of the (apparent microscopic)  surface areas in contact. ✔ 

OR

The coefficient of kinetic friction depends only on the type of materials used✔ (2)

[16] 

QUESTION 3 
3.1 An object upon which the only force✔ acting is the force of gravity.✔ 

ACCEPT
An object that falls freely ✔with an acceleration of (g) 9,8 m∙s-2

An object that is launched ✔(or synonyms) with an initial velocity under the  influence of the force of gravity.✔  (2) 
3.2.1    (4)

OPTION 1

Upward positive 

vf = vi + aΔt ✔ 
    -30   =   30✔ + (-9,8)Δt✔
    Δt = 6,12 s✔

Downward positive 

vf = vi + aΔt ✔ 
30 = -30✔ + (9,8)Δt✔
Δt = 6,12 s✔ 

OPTION 2

Upward positive 

vf = vi + aΔt ✔ 
0 = 30✔ + (-9,8)Δt✔ 
Δt = 3,06 s 
Total time/ = (2)(3,06)  = 6,12 s ✔

Downward positive  

vf = vi + aΔt ✔ 
0 = -30✔ + (9,8)Δt✔ 
Δt = 3,06 s 
Total time = (2)(3,06)  = 6,12 s ✔

OPTION 3

Upward positive 

Δy = viΔt + ½ aΔt2✔ 
0 = (30) Δt✔ +½ (-9,8)Δt2✔
Δt = 6,12 s✔

Downward positive 

Δy = viΔt + ½ aΔt2✔ 
0 = (-30) Δt✔ +½ (9,8)Δt2✔
Δt = 6,12 s✔

OPTION 4

Upward positive 

Fnet∆t = ∆p = (mvf – mvi)✔
mg∆t = m(vf – vi
9,8∆t✔ = (30-(-30))✔ 
Δt = 6,12 s✔

Downward positive 

Fnet∆t = ∆p = (mvf – mvi)✔ 
mg∆t = m(vf – vi
-9,8∆t ✔= (-30-30)✔ 
Δt = 6,12 s✔

OPTION 5

Upward positive 

From top to bottom
vf = vi + aΔt ✔ 
-30 = 0 ✔+ (-9,8)Δt✔ 
Δt = 3,06 s 
Total time = 2(3,06) 
 = 6,12 s✔

Downward positive 

From top to bottom
vf = vi + aΔt ✔ 
30 = 0✔ + (9,8)Δt✔ 
Δt = 3,06 s 
Total time = 2(3,06) 
 = 6,12 s✔

3.2.2 

POSITIVE MARKING FROM QUESTION 3.2.1  

OPTION 1
Upward positive 

Δy = viΔt + ½ aΔt2 ✔ 
Δylast= Δy(6,12)- Δy(5,12) 
 = {30(6,12) +½ (-9,8)(6,12)2}✔- {30 (5,12) +½ (-9,8)(5,12)2}✔  = -25,076  
Distance = |Δy| = 25,08 m✔ 

OR 

POSITIVE MARKING FROM QUESTIONS 3.2.1 
Downward positive

Δy = viΔt + ½ aΔt2 ✔
Δylast= Δy(6,12)- Δy(5,12) 
 = {-30(6,12) +½ (9,8)(6,12)2}✔- {-30(5,12) +½ (9,8)(5,12)2}✔ 
= 25,076  
Distance = |Δy| = 25,08 m✔ 

OPTION 2
Upward positive 

vf = vi + aΔt 
 = 0 + (-9,8)(2,06) ✔ 
 = -20,188 m∙s-1 

Δy = viΔt + ½ aΔt2 ✔ 
 = (-20,188)(1) + ½ (-9,8)(1)2 ✔ 
= -25,09 m 
Distance  = |Δy| = 25,09 m ✔ 

OR

 Δy =  vf + vi    Δt✔
              2
= -20,188 + (-30)  (1)✔
               2
= -25,09 m 
Distance = |Δy| = 25,09 m ✔ 

OR

vf2 = vi2 + 2aΔx ✔ 
(-30)2 = (-20,188)2 + 2(-9,8)Δx✔
Δx = -25,12 m 
Distance = |Δy| = 25,12 m ✔

Downward positive 

vf = vi + aΔt 
 = 0 + (9,8)(2,06)✔ 
 = 20,188 m∙s-1

Δy = viΔt + ½ aΔt2✔ 
 = (20,188)(1) + ½ (9,8)(1)2 ✔ 
= 25,09 m 
Distance  = |Δy| = 25,09 m✔ 

OR

Δy =  vf + vi    Δt✔
              2
= 20,188 + 30  (1)✔
               2
= 25,09 m 
Distance = |Δy| = 25,09 m✔ 

OR/OF 

vf2 = vi2 + 2aΔx ✔
(30)2 = (20,188)2 + 2(9,8)Δx✔ 
Δx = 25,12 m 
Distance  = |Δy| = 25,12 m✔

OPTION 3

vf = vi + aΔt 
= 0 + (-9,8)(2,06)✔ 
 = -20,188 m∙s-1 

Δy =  vf + vi    Δt✔
              2
= -20,188 + 30  (5,12)✔
               2
= -25,12 m 
Distance= |Δy| = 25,12 m✔

vf = vi + aΔt 
 = 0 + (9,8)(2,06)✔ 
 = 20,188 m∙s-1 

Δy =  vf + vi    Δt✔
              2
= 20,188 - 30  (5,12)✔
               2
= -25,12 m 

Distance  = |Δy| = 25,12 m✔

OPTION 4
Upward positive 
Distance travelled in the first second =  distance travelled in the last second 

Δy = viΔt + ½ Δt2 ✔ 
 = (30)(1) + ½ (-9,8)(1)2 ✔ 
 = 25,1 m ✔ 
Distance  = |Δy| = 25,1 m ✔

Downward positive 
Distance travelled in the first second =  distance travelled in the last second 

Δy = viΔt + ½ Δt2✔ 
 = (-30)(1) + ½ (9,8)(1)2 ✔ 
 = -25,1 m ✔ 
Distance = |Δy| = 25,1 m ✔ 

(4) 

3.3      (4) 

POSITIVE MARKING FROM QUESTION 3.2.1 

Upward positive 

Δy = viΔt + ½ aΔt2✔ 
-50✔= [vi (4,12)] + [½ (-9,8)(4,12)2]✔  vi = 8,05 m∙s-1
speed = 8,05 m∙s-1✔ 

Downward positive 

Δy = viΔt + ½ aΔt2✔ 

50✔= vi (4,12) + [½ (9,8)(4,12)2]✔ vi = - 8,05 m∙s-1  

speed/spoed = 8,05 m∙s-1✔ 

3.4 

POSITIVE MARKING FROM QUESTIONS 3.2.1 AND 3.2.2
Upward positive


ph 3 3

Criteria

Marks

Correct shape of A  

Correct shape of Graph B parallel to A below A 

Time at which both A and B reach the ground (6,12 s)  

Time for A to reach the maximum height (3,06 s) shown  

NOTE :
Do not penalise if velocities are not indicated 
3.4 

POSITIVE MARKING FROM QUESTIONS 3.2.1 AND 3.2.2
Downward positive

ph 3.4

Criteria

Marks

Correct shape of A  

Correct shape of Graph B parallel to A above A 

Time at which both A and B reach the ground (6,12 s)  

Time for A to reach the maximum height (3,06 s) shown  

(4)
[18]

QUESTION 4
4.1 The total (linear) momentum of an isolated (closed) system ✔is constant (is conserved) ✔ 

OR

In an isolated (closed) system, the total (linear) momentum ✔before collision is equal to the total linear momentum after collision. ✔  (2) 

4.2.1      (4) 

∑pi = ∑p
m1 v1i + m2v2i = m1 v1f + m2v2f 

m1 v1i + m2v2i = (m1 + m2)v
1 mark for any 
(5)(4) + (3)(0) ✔ = (5 + 3)vf✔ 
∴ v = 2,5 m∙s-1 ✔ 

OR

Δp5kg = -Δp3kg ✔ 
mvf - mvi = mvf - mvi 
5vf – (5)(4)✔ = 3vf – (3)(0) ✔ 
vf = 2,5 m∙s-1 ✔ 

4.2.2     (4)

OPTION 1
POSITIVE MARKING FROM QUESTION 4.2.1 

Fnet∆t = ∆p = (pf – pi) = (mvf – mvi) ✔ 
Fnet(0,3) ✔ = 8 [(0 – (2,5)]✔ 
Fnet = - 66,67 N  
Fnet = 66,67 N✔

OPTION 2
POSITIVE MARKING FROM 4.2.1 

Fnet = ma ✔ 

 = m (vf- vi)
           Δt 

 = 8 (0 - 2,5) ✔= - 66,67 N 
         0,3✔ 
∴ Fnet = 66,67 N✔ 

OPTION 3
POSITIVE MARKING FROM 4.2.1  

vf = vi + a∆t 
0 = 2,5 + a(0,3) ✔ 
a = - 8,333 m·s-2 
Fnet = ma ✔ 
 = 8 (-8,333) ✔ 
 = - 66,67 N 
∴ Fnet = 66,67 N✔ 

OPTION 4

Wnet = ΔEk 
FnetΔxcosθ = ½ m(vf2 – vi2

Fnet (Vf + Vi)  Δt cos 180º = ½m(Vf2 - Vi2)✔
             2
Fnet (2,5 + 0) (0,3) (-1)✔= ½(8)(02 - 2,55)✔
               2
Fnet = 66,67 N✔ 

[10] 

QUESTION 5 
5.1 The total mechanical energy in an isolated (closed) system ✔remains  constant (is conserved). ✔ 
NOTE

If total or isolated/closed is omitted (max: 1/2 )  (2) 

5.2.1      (3) 

W = F∆x cosθ✔ 
 = (30)(   5   )cosθ 
         sin30º
 = (30)(10)cos180º
 = (30)(10)(-1) ✔
 = - 300 J✔ 

5.2.2     (5)

OPTION1
POSITIVE MARKING FROM 5.2.1

Wnc = ΔEP+ ΔE
Wnc = mg(hf - hi) + ½ m(vf2 - vi2 ) ✔ 
- 300 ✔= (20)(9,8)(0 - 5) ✔+ ½ (20)(vf2 –0) ✔ 
v = 8,25 m∙s-1✔ 

OPTION 2
POSITIVE MARKING FROM 5.2.1

Wnet = ΔE
Wg + Wf = ½m(vf2 - vi2 ) ✔

Wg + (-300) = ½ (20)(vf2 -0)✔  
                                 5
[(20)(9,8)sin30º  5/ 0,5 cos 0 ] ✔ + (- 300) ✔ = 10vf2
vf = 8,25 m∙s-1✔ 

5.3    (4) 

F = w// + f 
 = (100)(9,8)sin30º + 25 ✔ 
 = 515 N 

Pave = Fvave ✔ 
 = (515)(2)✔ 
 = 1 030 W✔ 

[14] 

QUESTION 6 
6.1 X ✓ (1) 

6.2 As ambulance approaches the hospital the waves are compressed✓or wavelengths are shorter. Since the speed of sound is constant✓ the observed frequency must increase✓. Therefore the hospital must be located on the side  of X (from v = fλ) 

OR

The number of wave fronts per second reaching the observer are more at  X✓✓. For the same constant speed, this means that the observed frequency  increases ✓therefore the hospital must be located on the side of X.  (from v = fλ)  (3) 
6.3      (5) 

fL= V ± V f               OR      F    V   FS✔
       V  ±  VS                                       V - VS
f     304 ✔ (400)✔
           (340 -✔ 30)

fL = 438,71 Hz✔ 

NOTE:
If any other value for the speed of sound is used subtract 2 marks. One for  substitution and one for answer 

6.4     (3)

v = fλ✔ 
340 = 400λ
λ = 0,85 m✔ 

[12]

QUESTION 7 
7.1  (3) 

n = Q
  -32×10-9     ✓ 
      -1,6×10-19 
 = 2 x 1011✓electrons 
NOTE:  
Answer must be positive (-1 mark)  

n = Q
  -32×10-9     ✓ 
      -1,6×10-19 
 = 2 x 1011✓electrons 

PH 7N
7.2    (3)

Accepted label

w

Fg/Fw/weight/mg/gravitational force 

T

FT/tension  

Fs/spanning 

FE

Felectrostatic/FQ1Q2 /Coulomb force/F 

7.3    (5)

Fnet = 0  
mg + FE = T 
mg + k   Q1Q ✔ - T = 0
               r2
(0,007)(9,8)✔ +(9 × 109 )( 32 × 109 )( 55 × 109 ✔ = T     
                                                   (0,025)2✔ 
∴T = 9,39(4) x 10-2 N✔ (Accept: 0,1 N) 

ACCEPT

FE = wQ2 ✔ 
(0,007)(9,8) ✔+ (0,007)(9,8)✔✔ = T 
T = 0,137 N ✔ 

[11] 

QUESTION 8 
8.1 The (electrostatic) force experienced by a unit positive charge (placed at that  point).✔✔ 
NOTE:
If the words “unit positive” is omitted (max 1/2)  (2) 

8.2        (2) 
phhh8

8.3         (3) 

Guideline for allocating marks

               

Lines must not cross / Lines must touch the spheres but not enter spheres

Arrows point outwards 

Correct shape  

(5) 

E =kQ ✔ 
       r2
EQ1X( 9×109)(30 ×10-6)✔
                        (x )2
EQ2X = ( 9×109)(45 ×10-6)✔
                  (0,15+ x )2
Enet = 0  

EQ1X = EQ2X 
( 9×109)(30 ×10-6)✔    =   ( 9×109)(45 ×10-6)
          (x )2                               (0,15+ x )2

✔For equating equations 

5,477   6,708     
    x         0,15 + x 
x = 0, 67 m (0,667 m) ✔ 


[10] 

QUESTION 9 
9.1.1     
(3) 

OPTION 1 

P =  V2 / R
4 = V2 / R =  (12)2 / R✔ 

R = 36 Ω✔

OPTION 2 

P = VI 
4 = I(12) 
I = 0,33...A 

V = IR✔ 
12 = 0,33R✔ 
R = 36,36 Ω✔

OPTION 3 

P = V I 
4 = I(12) 
I = 0,33 ..A 

P = I2 R ✔ 
4 = (0,332) R✔ 
R = 36,73 Ω✔ 

9.1.2 Increase✔ (1) 
9.1.3 No change✔ -  Same potential difference✔ (and resistance)  (2) 
9.2.1        (4) 

V = IR ✔ 
5 = I(6) ✔ 
∴ I = 0,83 A 

V”lost” = Ir                               OR                    ε= I(R + r)
1 = (0,83)r ✔                                                   6 = (0,83)(6 + r) ✔
r = 1,20 Ω✔                                                     r = 1,23 Ω✔ 

9.2.2 Work done ✔in moving a unit charge ✔ through a cell. 
ACCEPT
Energy transferred per unit charge/ Work done in moving in 1 C of charge.  (2) 
9.2.3 

OPTION 1
POSITIVE MARKING FROM 9.2.1
V”lost” = Ir 
1,5✔ = I(1,2) 
I = 1,25 A 

V|| = I6R6 
4,5 = I6(6)✔ 
I6 = 0,75 A 

Vx = IRx✔           OR                   V = IR
4,5 = (1,25 – 0,75)Rx✔ 
Rx = 9 Ω✔

OPTION 2
POSITIVE MARKING FROM 9.2.1

V”lost” = Ir 
1,5✔ = I(1,2)
I = 1,25 A 

V|| = IpRp 
4,5 = (1,25)Rp✔ 
Rp = 3,6 Ω 

PHHH99

RX = 9 Ω✔ 

(5) 
[17] 

QUESTION 10 
10.1.1 a to b ✔ (1) 
10.1.2 Fleming's left hand rule /Left hand motor rule✔ 
ACCEPT

Right hand rule (1) 

10.1.3 Split rings /commutator ✔ (1) 
10.2.1 Mechanical/Kinetic energy to electrical energy. ✔✔ (2 or/of 0) (2) 

10.2.2    (5) 

OPTION 1 

Vrms  = Vmax
                √2 

 430  
      √2 
= 304,06 V 

I = V/R✔ 

= 304,06/400 
 = 0,76 A✔ 

OPTION 2 

Vmax = ImaxR ✔ 
430 = Imax(400) ✔

Irms = Imax
                √2 

 1,075 
      √2 

 = 0,76 A✔ 



OPTION 3

Vrms  = Vmax
                √2 

 430  
      √2 
= 304,06 V 
Paverage = V2rms = (304,06)2
                     R             400
 = 231,13 W 
 Pave = IrmsVrms✔ 
231,13 = Irms (304,06) ✔ 
 Irms = 0,76 A✔ 

OPTION 4 

Vrms  = Vmax
                √2 

 430  
      √2 
= 304,06 V 
Paverage = V2rms = (304,06)2
                     R             400
 = 231,13 W 

 Pave = I2rmsR✔ 

231,13 = I2rms (400) ✔ 

 Irms = 0,76 A✔ 

[10] 

QUESTION 11 
11.1.1 It tells us that light has a particle nature.✔  (1)
11.1.2 Remain the same. ✔ - For the same colour/ frequency/wavelength the energy of the photons will be  the same✔. (The brightness causes more electrons to be released, but they  will have the same maximum kinetic energy.) 

OR

Intensity only affects the number of ejected photo-electrons and not the  maximum kinetic energy or maximum speed of the ejected photo-electrons 

OR

Maximum kinetic energy of ejected photo-electrons is independent of intensity  of radiation  (2) 

11.1.3        (5) 

E = W0 + E 
hf = hf0 + Ek 
hf = hf0 + ½ mv2 
E = W0 + ½ mv2 
Any one✔
(6,63 10-34)(3 × 108 ) ✓ = (6,63 × 10-34)(3 × 108) ✓ + ½  (9,11 10-31)(4,76 × 105 ) 2✓ 
             420 ×10-9                             λo
λo = 5,37 x 10-7 m 
∴ the metal is sodium  ✓ 

11.2 Q✓ and/en S ✓ - Emission spectra occur when excited atoms /electrons drop from higher  energy levels to lower energy levels. ✓✓ (4)

[12] 
TOTAL: 150 

Last modified on Tuesday, 15 June 2021 08:04