QUESTION 1
1.1.3 |
−x2 − x + 2 ≤ 0 ( If learner treats inequality as and equal sign, i.e
|
✓x2 − x + 2 ≤ 0
OR
✓1−x |
1.3
CORRECTION |
(x+m)(x+n) = 3p2 x2 + nx + mx + mn − 3p2 = 0 x2 + (m + n)x + (mn −3p2 = 0 For real roots b2 − 4ac ≥ 0 ∴ (m + n)2 − 4(1)(mn − 3p2) m2 + 2mn + n2 − 4mn + 12p2 m2 − 2mn + n2 + 12p2 (m − n)2 + 12p2 Now: (m − n)2 ≥ 0 and 12p2 ≥ 0 ∴ Δ ≥ 0 ⇒ roots are real |
✓ (m − n)2 + 12p2 ≥ 0 |
QUESTION 2
2.1.4 | Pn = Tn + k = −n2 + 36n + (51 + k) | ✓✓ answer (ANSWER ONLY- FULL MARK) (2) |
QUESTION 3
3.1 | 1 + 4 + 42 + 43 + ... + 4n−1 ∴ Tn = 4n−1 ∴ Sum OR For original sequennce: Sum : Sn : − OR − |
✓ Tn = 4n−1 ✓ OR ✓ ✓ answer (4) |
QUESTION 5
ALTERNATIVE SOLUTION 5.3 | g(x)=bx − 8
−5 = b1 − 8 2a (−¾) + 3 = 0 |
✓substituting (1; −5) ✓ b = 3
✓2ax + 3 = 0 ✓2a (−¾) + 3 = 0 ✓simplifying ✓ ƒ(1) = −5 (6) |
5.6 | y = 3x or y = bx y = log3x or y = logbx |
✓finding h(x) ✓answer |
QUESTION 6
6.1 | A = P(1−i)n 1/3 x = x(1 − i)4 1/3 = (1−i)4 3−¼ − 1 = − i −0,24 01643143 = −i ∴ i = 0,2401643143 ∴ r = 24,02% p,a |
✓ 1/3 x = x(1 − i)4
✓i = 0,2401643143 |
ACCEPT
6.2.1 | Monthly Instalment = R596458,10 72 =R8284,14 |
✓dividing by 72 ✓answer (2) |
6.2.2 |
✓n = − 72
✓A = R338070,29 |
6.2.1 allocate 2 marks
6.2.2 stick to original mark allocation of 6 marks
Total of paper reduced to 147 (convert to 150)
NB - Learners that answered according to the original memo - mark out of 150
QUESTION 7
IN THIS QUESTION WE PENALISE ONCE FOR INCORRECT NOTATION |
QUESTION 8
8.3 | For concave down ƒ''(x)<0 ƒ'(x) = 6x2 + 2x − 12 ƒ''(x) = 12x + 2 ∴12x + 2 < 0 x < −1/6 IF LEARNER WORKS WITH EQUALITY SIGN AND CONCLUDES CORRECTLY (4/4) IF LEARNER WORKS WITH EQUALITY SIGN AND DOES NOT CONCLUDE CORRECTLY (3/4) |
✓ƒ''(x)<0 (4) |
ALTERNATIVE SOLUTION | Point of inflection (x-coordinate) ƒ(x) = 2x3 + x2 − 12x + 9 x = − b/3a = − 1/3(2) = − 1/6 ∴ x < −1/6 |
✓ formula ✓substitution ✓answer ✓ conclusion |
8.4 | 6x2 + 2x − 12 ≤ 0 =−2± √292 12 =−1,59 or/of 1,26 ∴ −1,59 ≤ x ≤ 1,26 |
✓substitution into correct formula ✓ x - values (4) |
QUESTION 10
10.1 |
Correct entries of: ✓5; 12; 24 ✓12 / (91 − 4y − x )/ (60 −3y) (4) |
|
10.3 | P(M or (P and A)) = 2y + 3 + 5 + 12 + x + 24 135 = 35 + 5 + 12 + 15 + 24 135 = 91/135 or 0,67 |
✓2y + 3 + 5 + 12 ✓ x + 24
✓answer (3) |
ALTERNATIVE SOLUTION | ||
P(M∩(P∩A)) = P(M) + P(P∩A) − P(M∩P∩A) = 67/135 + 39/135 − 15/135 = 91/135 |
✓formula ✓substitution ✓answer (3) |
QUESTION 11
ALTERNATIVE SOLUTION
11.2 | Probability = 3 × 2 × 3! 5! =3/10 |
✓ 3 × 2 ✓ 3! ✓ 5! ✓ answer (4) |