QUESTION 1
1.1 | a = −4,1536 b = 0,958 y = −4,1536 + 0,958x Answer Only: Full Marks | ✓a = −4,1536 ✓b = 0,958 ✓y = −4,1536 + 0,958x (3) |
1.2 | r = 0,98 | ✓r = 0,98 (1) |
1.3 | Very strong positive correlation | ✓answer (1) |
1.4 | y = −4,1536 + 0,958(51) y = 45% Answer Only: Full Marks | ✓ substitution ✓answer (2) |
1.5 | x̄ = 60,8 Standard deviation = 17,51 (60,8 − 17,51 ; 60,8 + 17,51) (43,29; 78,31) 6 learners | ✓ Standard deviation=17,51 ✓(43,29; 78,31) ✓6 learners (3) |
[10] |
QUESTION 2
2.1 |
| ✓freq column ✓ cum freq colum (2) | ||||||||||||||||||
2.2 | ✓starting pt ✓ end point ✓ shape (3) | |||||||||||||||||||
2.3 | Q1 = 23 (accept 22-24) Median = 31 (accept 30-32) | ✓Q1 ✓Median (2) | ||||||||||||||||||
2.4 | ✓for Q3 = 37 (accept 36-38) ✓ correct shape (2) | |||||||||||||||||||
2.5 | 170 − 110 = 60 cyclists (accept 59-61) | ✓answer (1) | ||||||||||||||||||
[10] |
QUESTION 3
3.1 | mQR = −2 − (−4) = − 1/3 0 − 6 | ✓ substitution |
3.2 | mPQ = 3 mPQ × mQR = 3 × − 1/3 = − 1 ∴ PQ̂R = 90° | ✓ mPQ = 3 ✓mPQ × mQR = 3 × − 1/3 = − 1 (2) |
3.3 | Sub: y = −x + 2 into 3x − y − 2 = 0 ∴3x − ( −x + 2 ) − 2 = 0 3x + x − 2 − 2 = 0 4x = 4 x = 1 y = 1 ∴ P(1;1) | ✓substitution ✓x - coordinate ✓y = coordinate (3) |
3.4 | QR = √(0 − 6)2 + (− 2− (− 4))2 QR = 2√10 OR √40 OR 6,32 Answer Only: Full Marks | ✓ substitution in correct ƒ ✓ answer (2) |
3.5 | PR is the diameter ( angle subtended by diameter = 90°) | ✓ for the statement PR is the diameter ✓✓Midpoint of PR ✓for the radius ✓equation (5) |
3.6 | tan PNX = −1 ∴ PNX 135° tan PMX = 3 ∴ PMX = 71,57° θ = 135° − 71,57° = 63,43° | ✓ tan PNX = −1 ✓ ∴ PNX 135° ✓ tan PMX = 3 ✓ ∴ PMX = 71,57° ✓answer (5) |
3.7 | A = ½ × PQ × QR OR | ✓formula (3) |
[22] |
QUESTION 4
4.1 | x2 − 6x − y2 − 4y + 9 = 0 x2 − 6x + 9 + y2 − 4y + 4 = −9 + 9 + 4 (x −3)2 + (y −2)2 = 4 C(3;2) and r = 2 | ✓ completing square |
4.2 | mtan = −2 y − 2 = ½(x − 3) | ✓ mBV = ½ ✓ substitution ✓ answer (3) |
4.3 | y = 4 | ✓ answer (1) |
4.4 | TA = 4 units TB = TA (tangents from the same point) TB = 4 units | ✓ length of TA |
4.5 | T(−1;4) | ✓ substitution |
4.6 | tan STA = −2 | ✓ tan STA = −2 |
[18] |
QUESTION 5
5.1.1 | cos 158° = − cos 22° =− p |
✓= − cos 22°
(2) |
5.1.2 | sin 112° =sin ( 90° + 22°) = cos 22° =p | ✓cos 22° ✓ p (2) |
5.1.3 | sin 38° = sin(60° − 22°) =sin 60° cos 22° − cos 60° sin 22° = √3/2p − ½√(1 − p2) | ✓ sin(60° − 22°) ✓expansion ✓√3/2 ✓ ½√(1 − p2) (40 |
5.2
| sin P = sin 2P sin P − sin 2P = 0 OR P 2P + 360°k or P = 180° − 2P + 360°k , | ✓standard form
✓P 180° − 2P + 360°k |
5.3 | A + B + C 180° | ✓ A + B = 180° − C (2) |
5.4 |
| ✓1 − cos2x (5) |
5.5 | 4 + 7 cos θ = cos 2θ = 0 4 + 7cos θ + 2 cos 2 − 1 = 0 2 cos2 θ + 7cos θ + 3 = 0 (2 𝑐𝑜𝑠 𝜃 + 1) (𝑐𝑜𝑠 𝜃 + 3) = 0 cos θ = −½ or cos θ = − 3 (N/A) θ = 120° = 360°.k or θ = 240° + 360.k , 𝑥 ∈ ℤ | ✓ 2 cos2 − 1 |
[25] |
QUESTION 6
6.1 | b = ½ | ✓ answer (1) |
6.2 | A(30°;1) | ✓ 30° ✓ 1 (2) |
6.3 | g(90°) = cos(90° − 30°) = cos 60° =½ Q(90°;½) | ✓ 90° ✓ ½ (2) |
6.4 | x = 160° | ✓ x = 160° (1) |
6.5 | −1 ≤ y ≤ 3 y ∈ R OR y ∈ [−1;3] | ✓✓ answer (2) |
[8] |
QUESTION 7
7.1 | ∠ LNM 180° − 2p ( angles opp. = sides) | ✓answer ✓reason (2) |
7.2 | LM = d sin(180° − 2p ) sin p | ✓for applying th sine rule ✓sin 2p (2) |
7.3 | tan q = h LM | ✓tan q = h LM |
[7] |
QUESTION 8
8.1 | bisects the chord | ✓ answer (1) |
8.2 | EB 8 − y In ΔAEB: 102 = x2 + (8 − y)2 ...………….(1) | ✓ for EB ✓Pythagoras in Δ AEB
✓ equation of the circle ✓substitution ✓answer
(5) |
8.3 | Double the size of the angle subtended by the same arc. | ✓ answer (1) |
8.4.1 | (∠ at centre = 2 x ∠ at the circumference | ✓statement ✓reason (2) |
8.4.2 | (∠s opp = sides) | ✓ statement ✓ reason (2) |
8.4.3 | (opp. ∠s of a cyclic quad) | ✓statement ✓reason (2) |
8.4.4 | (∠s in the smae segment) | ✓statement ✓reason (2) |
[15] |
QUESTION 9
9.1 | ∠ PCQ = 80°( ∠ s opp = sides) ∠PCB = 100° (∠s on a straight line) ∴BC is not a diameter (angle between the tangent and BC is not equal to 90° | ✓statement ✓reason ✓statement ✓reason ✓conclusion |
9.2 | P1 = B (alt ∠ s, PQ || AB) B = C3 (s opp = sides; radii) C3 = C1 ( vert. opp. angles) ∴P1 = C1 ∴PQ = QC (sides opp = angles) | ✓statement ✓reason ✓statement ✓reason ✓statement ✓ statement and reason |
9.3 | A=E2 (ext. ∠ of a cq) D = 180° − E2 (co–interior ∠s; BE || CD) D+A 180° ˆACDF is a cq (opp ∠ s supplementary) OR D=E1(corres. ∠ s; BE || CD) E2 = 180° − E1 (∠ s on a straight line) A = 180° − E1 (opp ∠ s of a cq) D+A = 180° ∴ ACDF is a cyclic quad. (opp ∠ s of a quad. supplementary) | ✓statement ✓statement ✓reason |
[16] |
QUESTION 10
10.1 | RTP : MS = MT SO TN Construction: Join SN, and OT, and construct perpendicular heights Proof : But ΔMST is common And area of ΔOST = area of ΔTNS (same base, same height) ∴ MS = MT SO TN | area
✓area of the two triangles ✓ MS ✓area of the two triangles ✓MT ✓ statement and reason |
10.2.1 | In ΔAPS and Δ BRS P4 = R1 (tan – chord theorem) A = B2 = 90° (given) / (gegee) ΔAPS ||| ΔBRS (AAA) | ✓statement and reason ✓statement ✓3 rd ∠ OR ✓reason for similarity (3) |
10.2.2 | AP = PS = AS (similar triangles) BR RS BS ∴ AP.RS = BR,PS | ✓for the statement (1) |
10.2.3 | P2 = 90° (∠s in a semi – circle) Let P4 = x ∴ S1 = 90 − x (∠s of APS) ∴ Q 90 − x (ext ∠ of a cq) ∴ R2 = x (∠s of QPR) ∴ P4 = R2 | ✓P2 = 90 (in a semi – circle) ✓S1 = 90 – x ✓Q = 90 – x ✓R2 = x (4) |
10.2.4 | In ΔASP and ΔPQR A = P2 (proven) P4 = R2 (proven) ΔASP ||| ΔPQR (AAA) AS = SP = AP (similar triangles) PQ QR PR ∴AP . QR = SP . PR ∴ AP = PR PS RQ But AP = BR PS RS (from 10.2) ∴ PR = BR RQ RS ∴ BR.RQ = RS.RP | ✓statement and reason
✓∴ AP = PR ✓AP = BR ✓ ∴ PR = BR (6) |
[19] |
TOTAL : 150