QUESTION 1

 1.1   a = −4,1536 
 b = 0,9580
 y = −4,1536 + 0,9580x 
 penalty for rounding
 ✓a = −4,1536 
 ✓b = 0,958 
 ✓y = −4,1536 + 0,958x 
(3)
 1.5  x̄ = 60,8
 Standard deviation = 17,51
(60,8 − 17,51 ; 60,8 + 17,51)
(43,29; 78,31)
6 learners  (Accept)
 ✓ Standard deviation=17,51
✓(43,29; 78,31)
✓6 learners

 (3)

 

QUESTION 2

 2.4   Award 1 mark for Min. and Max and 1 mark for Q3   ✓Min and Max
 ✓Q3    (2)

 

QUESTION 3

 3.6 Alternatives: PR = √50 ✓✓   sin θ = 2√10  ✓✓ θ = 63,43°✓  
                                                          √50
                              OR
PR =  √50 ✓  PQ =  √10 ✓   cos θ =  √10 ✓✓   θ = 63,43° ✓
                                                           √50
                              OR
 PR = √10 ✓✓   tan θ = 2√10  ✓✓    θ = 63,43°  ✓
                                      √50







  (5)    

 

QUESTION 4

Related Items

The diagram shifted and some dimensions were not accurate. This caused the question to be opened for different answers when using different methods especially in 4.3 to 4.6.

There is, however, an easy fix.: 
Accept the alternatives in 4.4 and apply CA to the remaining questions

 4.1   x2 − 6x  − y2  − 4y + 9 = 0
 x2  − 6x + 9 + y2  − 4y + 4 =  −9 + 9 + 4 
(x −3)2 + (y −2)2 = 4
C(3;2) and r = 2 
Answer Only: Full Marks

✓ completing square 
✓ standard form
✓ 3
✓ 2     (4)

 

 4.4  4.4 alternatives / alternatiewe:

Solve/ Los op y=-2x+2 and y=1/2 x+1/2 simultaneously to yield x=0,6 y=0,8 
∴ B(0,6 ; 0,8)
∴TB = √((-1-0,6)^2+(4-0,8)^2 ) =3,58 

OR / OF
Solve y=1/2 x+1/2 and circle equation simultaneously to yield x = 1,21 y= 1,12 
B(1,21 ; 1,12)
TB = √((-1-1,21)^2+(4-1,12)^2 )  = 3,63

 ✓ length of TA
 ✓ S  ✓ R
✓ answer   (4)

 

 4.6

 Alternative: TAC = 90°✓ tan ACT = 2✓ ACT = 63,43✓ BCA = 126,86°✓ 

 (4)

 

QUESTION 5

 5.2   A common error is to divide by sin P. Awarded max of 2/4 if solved cos P =0,5 correctly.   (4)

 

QUESTION 10

10.2.4

Common alternative 
P2=90° (< in semi – circle)  ✓S/R
In ∆PQR and ∆BSR ✓choice of triangles
1) P2 = B2 (both  90°, proven ) ✓S
2) R2 = R1 (proven ) ✓S
∴ ∆PQR | | | ∆BSR (equiangular) ✓R

RQ/RS = RP/BR ✓S

∴ BR . RQ = RS . RP

Last modified on Friday, 18 February 2022 07:26