NATIONAL SENIOR CERTIFICATE
GRADE 12
SEPTEMBER 2020
TECHNICAL MATHEMATICS P2
MARKING GUIDELINE
NOTE:
MARKING CODES | |
M | Method |
A | Accuracy |
AO | Answer Only |
CA | Consistent Accuracy |
F | Formula |
I | Identity |
R | Rounding |
S | Simplification |
ST | Statement |
RE | Reason |
ST RE | Statement and correct reason |
SF | Substitution correctly in correct formula |
NPU | No penalty for omitting units |
QUESTION 1
1.1 | AB = √((x2 − x1)2 + (y2 − y1)2) =√((3 + 6)2 +( 2+ 3)2) = √((−6−3)2 + (−3− 2)2) = √106 | ✓ SF A ✓ CA | (2) |
1.2.1 | mBC = mBD |
✓SF A ✓gradient | (2) |
1.2.2 | tan θ = mBC = 4 ∴ θ = tan−1 (4) ∴ θ ≈ 76° | ✓ M | ( 2) |
1.2.3 | ∴ xc = −4 yc = 5 | ✓M ✓S ✓S ✓CA Both answers | |
1.2.4 | mnew line = 4 OR mnew line y = mx + c | ✓ CA gradient of new line ✓SF CA gradient and point A ✓S ✓CA
OR ✓ CA gradient of new line ✓SF CA gradient and point A ✓S ✓CA | (3) |
[13] |
QUESTION 2
2.1.1 | x2 + y2 = 49 | ✓SF A ✓ S CA ✓ CA surd form | (3) |
2.1.2 (a) | EF : y = 7 EG : x = −7 | ✓A y ✓A 7 ✓A x ✓A −7 | (4) |
2.1.2 (b) | E(−7; 7) | ✓CA | (1) |
2.2.1 | 16x2 + 49y2 = 784 x2 + y2 = 1 49 16 | ✓A LHS ✓A RHS | (2) |
2.2.2 | ✓CA x-intercepts ✓CA y-intercepts ✓CA elliptical shape | (3) | |
[13] |
QUESTION 3
3.1.1 | cosec A − tan B = cosec 123° − tan 65° = 1 − tan 65° sin123° ≈ − 0,95 | ✓A 1 sin 123° ✓ A −0,95 AO: Full marks | (2) |
3.1.2 | cot2 (A + 2B) = ≈ 0,09 | ✓ A ✓ A 0,09 AO: Full marks | (2) |
3.2 | sin π/6 + sec2 π/4 = sin 30° + 1 cos2 45° = 0,5 + 2 =2,5 | ✓ A 0,5 ✓A 2 ✓ CA 2,5 AO : Full marks | (3) |
3.3 | cot θ − sec θ = −5/12 − 13/−5 = 131/60 ≈2,18 | ✓A diagram in correct quadrant ✓A values of sides ✓ CA cot θ = −5/12 ✓CA sec θ = 13/−5 ✓2,18 | (5) |
3.4 | (tan2θ + 1)(1−cos2θ) =sec2θ × sin2θ = 1 × sin2θ cos2θ =tan2θ | ✓A sec2θ ✓A sin2θ ✓A 1 | (4) |
3.5 | sin (180° + x).tan135° | ✓A sin x ✓ A −1 ✓ A −sec x ✓ A cos x ✓ A −1 ✓ CA −sin x | (6) |
[22] |
QUESTION 4
4.1 | f: ✓A x-intercept ✓A turning points ✓A shape ✓A start and end point ✓A x-intercept | (5) | |
4.2 | 120° OR period = 360°= 120° 3 | ✓ A | (1) |
4.2.2(a) | 90° ≤ x ≤ 180° | ✓CA interval ✓ CA notation | (2) |
4.2.2(b) | 0° ≤ x ≤ 60° OR 90° ≤ x ≤ 120° | ✓ CA interval 1 ✓ CA notation ✓ CA interval 2 ✓ CA notation | (4) |
4.2.2(c) | x = 90° and x = 180° | ✓CA 90° ✓CA 180° | (2) |
[14] |
QUESTION 5
5.1 | Area Δ ABD = ½ad sin B =½ × 6 × 8 sin 57° =20,13 sq units | ✓ F ✓ SF ✓CA | (3) |
5.2 | AD2 = AB2 + BD2 − 2AB.BDcosB =82 + 62 − 2 × 8 × 6 cos 57° =47,714... AD ≈ 6,91 units | ✓F ✓SF A ✓CA ✓R | (4) |
5.3 | CD = AD sin CAD sin C CD = 6,91 sin 46° sin 31° CD = 6,91 sin 46° sin 31° ≈ 9,65 units | ✓F ✓SF A ✓S CA ✓CA | (4) |
[11] |
QUESTION 6
6.1 | Bisect the chord | ✓ A | (1) |
6.2 | |||
6.2.1 | AO = x + 7 | ✓A | (1) |
6.2.2 | AF = 24 units (line from centre ⊥ to chord0 AO2 = AF2 + OF2 (pyth) ∴ (x+7)2 = 242 + 72 ∴ x2 + 14x + 49 = 625 ∴ x2 + 14x − 576 = 0 ∴ (x+32)(x−18) = 0 ∴ x≠ −32 or x = 18 | ✓ST ✓RE ✓M ✓ST CA ✓ST CA | (5) |
6.3 | |||
6.3.1 | E = 66° (Int ∠s of Δ | ✓ST RE ✓ST | (4) |
6.3.2 | HGC = 114° (opp ∠s of cyclic quad) | ✓ST ✓ RE | (2) |
6.3.3 | C1 = 24° ( ∠s in same seg) ∴ C = 90° ∴ DG is a diameter (chord subtends 90°) OR ∴DG is a diameter ( converse ∠ in semi-circle | ✓ST ✓ RE
✓RE | (3) |
[16] |
QUESTION 7
7.1 | tangent to the circle | ✓A | (1) |
7.2 | |||
7.2.1 | H2 = 37° (tan-chord) | ✓ST ✓ RE | (2) |
7.2.2 | F2 = 53° rad ⊥ tangent) | ✓ST ✓ RE | (2) |
7.2.3 | D = 53° (∠ opp equal sides: DO and FO radii | ✓ST ✓ RE ✓ST ✓ RE | (2) |
7.2.4 | E2 = D2 (∠ s in same segm.) E2 = 53°−16° = 37° | ✓ST ✓ RE ✓ST | (3) |
[10] |
QUESTION 8
8.1 | Parallel | ✓A | (1) |
8.2 | |||
8.2.1 | BF = AG (line II to one side of Δ) FD GD =½ | ✓ST ✓ RE ✓ST | (3) |
8.2.2 | CG = CF (line II to one side of Δ) CH CB CF = CD + DF CB CD + DB = 3 + 2 (D midpoint) 3 + 3 CG = 5 CH 6 | ✓ST ✓ RE
✓ST
✓ST | (3) |
8.3 | |||
8.3.1 | D2 = x (tan-chord) | ✓ST ✓ RE
| (5) |
8.3.2 | In ΔDFE and Δ DEG: D2 (common) F2 = 90° ( ∠ in semi-circle) E = 90° (tan ⊥ radius ∴ ΔDFE///ΔDEG (AAA) | ✓ST ✓ RE ✓ RE | (6) |
[18] |
QUESTION 9
9.1 | s = rθ = (5) (60° × π/180° =5π/3 ≈ 5,24cm | ✓F ✓ SF A × π/180° ✓M ✓CA | (4) |
9.2 | Area of sector = rs/2 | ✓F ✓ SF A ✓CA ✓R OR ✓F ✓ SF A ✓CA ✓R | (4) |
9.3(a) | OCD = ODC (∠s opp = sides CD = 5cm (equiangularΔ) | ✓ST ✓ST AO: Full marks | (2) |
9.3(b) | 4h2 − 4dh + x2 = 0 = 40 ± √ 1200 =0,67 or 9,33 ∴ required height = 0,67cm | ✓F ✓ SF A ✓ S CA
✓ CA ✓C | (5) |
[15] |
QUESTION 10
10.1.1 | 180rpm = 180 rev × 1 min = 3 rps 1 min 60 sec | ✓ conversion ✓ SA AO: Full marks | (2) |
10.1.2 | n = 3rps v = πDn r = 6 ⇒ d = 12 v = π × 12 × 3 = 36πcm/s | ✓F ✓SF A ✓CA | (3) |
10.1.3 | w = v/r = 36π/6 = 6π rad/s | ✓F ✓SF A ✓CA | (3) |
10.2 | Vcylinder = πr2h 1l = π(12cm)2h 1000cm3 = 144πh cm2 h = 2,2 cm | ✓F ✓ A 1l = 1000 cm3 ✓SF A ✓CA | (4) |
[12] |
QUESTION 11
11.1 | = 16,75a a = 15,28 OR = 16,75a a = 15,28 | ✓F ✓SF A ✓CA OR ✓F ✓SF A | (4) |
11.2 | Length of straight edge = 15,28 × 6 = 91,68m | ✓M ✓ CA | (2) |
[6] | |||
TOTAL | 150 |