MARKING SCHEME

QUESTION 1
1.1 x = 420,8
         80
= 5,26 
√ 420,8
     80
√ answer
(2) 
1.2  total of heights
= 4,86 × 7 = 34,02
error = 4,98 - 4,89 = 0,09
new total heights
= 33,93
new mean = 33,93 = 4,85m
                         7 
√ error = 0,09
√ new total
√ answer
(3) 
1.3 Standard deviation of individual heights of the
80 giraffes would be bigger than that of 7
males.
There is a bigger spread of heights among
population of juveniles and adults and babies.
√ bigger/larger standard deviation
√ bigger spread of heights
(2)
      [7]
QUESTION 2
2.1  2.1 yatfyda √√ all points plotted correctly (2)
2.2 y = a + bx
a = 4,64    b = 0,27
y = 4,64 + 0,27x
√ value of a 
√ value of b
√ equation
(3)
2.3 see line in 2.1 √ correct gradient
√ correct line
(2) 
2.4 r = 0,78 √ r = 0,78  
2.5 fairly strong positive correlation in the % of cocoa and the price  √ correct description of r (1)
2.6.1 

 Brand D 

OR (35;24)

 √ answer  
2.6.2 y = 4,64 + 0,27(35)
=R14,09
Overpriced by .R24,00 - R14,09 = R9,91
√ substitution
√ R14,09
√ R9,91
(3)
      [13]
QUESTION 3
3.1 D(4;0) √ answer (1)
3.2 3.2 uaygda √ substitution
√ answer
(2)
3.3 Angle of inclination of DE
= tan -11/3
= 18,43º
ODE = 18,43º (vert.opp. ∠ s) 
OED = 71,57º (complementary ∠ s)
∴ PRB = 71,57º (corr. ∠ e: DE II BC)
√ tan -11/3
√ 18,43º 
√ answer
√ reason
(4)
3.4 3.4 afgdtya √ substitution
√ answer
(2)
3.5 AD = 3 = 1
AB    9    3
√ ratios
√ simplified answer
(2)
3.6

ΔABC III  ΔADE
AD = DE = 1
  AB     BC    3
BC = 3 DE
3.6 auygda

OR

equation of BC
y - 6 = 1/3 (x - 4)
∴ y = 1/3x + 14/3
3.6 b auygda

equation of AC
3.6 c auygda

√ ratio of corresponding sides
√ isolating
√ substitution

 

 

OR

√ equation of BC

√ equation of AC
√ answer

(3)
3.7.1 midpoint of DE
3.7.1 auygda
√√ coordinates (2)
3.7.2 mbisector = -3
Equation of bisector
3.7.2 uhaguydguasyd
√ gradient of bisector
√ substitution
√ equation
(3)
3.8 LHS = -3
RHS = -3(4) + 16/3
= - 20/3 = -62/3 ≈ -6,66
LHS # RHS
No, bisector does not pass through A
√ substitution
√ conclusion
(2)
      [21]
QUESTION 4    
4.1  x2 - 6x + y2 = 16
(x - 3)2 + (y - 0)2 = 16 + 9
(x - 3)2 + (y - 0)2 = 25
Hence centre (3;0)
Radius = √25 = 5
√ completing the square
√ final form
√ taking square root
(3) 
4.2.1 y = 0 : hence (x - 3)2 = 25
x - 3 = ± 5
x = 3 ± 5
B (8 ; 0)
OR
4.2.1 augda

√ equating = 0
√ solving fofr x
√ coordinates of B

OR

√√√ use of horizontal distance

(3)
4.2.2

x = 0 : then (-3)2 + y2 = 25
9 + y2 = 25
y2 = 16
y = ± 4
C (0 ; -4) 

OR 

using pythagoras :
MD2 = OM2 + OD2
52 = 32 + OD2
4 = OD = OC
C(0;-4)

√ equating x to 0
√ coordinates of C
OR
√ use of pythagoras
√ coordinates of C
(2)
4.3

MCP = 90º
PM2 = MC2 + PC2
(81/3)2 = 52 + PC2
4.3 uagda

OR

POC = 90º
PC2 = PO2 + OC2
PO = (81/3) - 5 - 2 = 16/3 and OC = 4
PC2 = (16/3)2 + 42
4.3 uagda

√  radius ⊥ tangent
√  substitution into Pythag. Thm
√  answer

 


OR

 


√  calculation of PO
√  substitution into Pythag. Thm 
√  answer 

(3)
4.4

4.4.a tgaytdgag
mBD = -½
tan-1(-½) = - 26,57º
∴ α = 180 - 26,57º
∴ θ = 180º - 153,43º = 26,57º
DBC = 2 × 26,57º
= 53,14º

OR

4.4 b augduad

OR

tan DBO = 4 = 1
                  8    2
DBO = 26,57º
DBC = 2 × 26,57º
= 53,14º

√ gradient of BD 
√ calculation of α 
√ angle θ 
√ doubling the angle 
OR
√ sin definition 
√ use of arcsin
√ angle θ 
√ doubling the angle 
OR 
√ tan ratio 
√ use of arctan to find angle 
√ angle 
√ doubling the angle 
(4)
4.5

New circle centre
-M(5 ; 1)
C(2 ; -3)
mMC = 4/3
mtan = -3/4
-3 = -3/4(2) + c
∴ c = -3/2
∴ y = -3/4x - 3/2

OR 

Gradient of MC = 4/3
Hence gradient of M'C'  M'C' = 4/3      (MC ∥ M'C')
Gradient of tangent at C'  = −3/4 (M'C' ⊥ tang at C')
C' = (2 ; − 3)
∴𝑦 + 3= −3/(x - 2)
∴𝑦 = −3/4 x - 3/2

√ coordinates of M and C
√ gradient of MC
√ gradient of tangent 
√ equation

OR 

√ gradient of MC 
√ gradient of M'C' 
√ coordinates of C' 
√ equation

(4)
      [19]
QUESTION 5    
5.1.1 1 √ answer (1)
5.1.2 cos 2A √ answer (1)
5.2.1 32 = 22 + k2
k = -√5
√ distance formula pythagoras Thm
√ answer with correct sign
(2)
5.2.2 (a) tan (θ -180º) tan θ
= -√5
      2
√ reduction
√ answer
(2)
5.2.2 (b)

5.2.2 b auygda

OR

5.2 augda

√ 1 – sin22θ = cos2
√ 1 – 2sin2θ = cos 2θ
√ substitution for sin
√ answer 
OR 
√ 1 – sin22θ = cos2
√ 1 – 2sin2θ = cos 2θ
√ substitution for cos
√ answer 

OR 
√ sin22θ = (2sinθcosθ)2
√ substitution for sin θ
√ substitution for cos θ
√ answer 
(4)
5.3 sin (−200º).cos 310º + tan (−135º).cos 380º .sin 230º
= sin (20º)(cos 50º) + (tan45º)(cos 20º)(−sin50º)
= sin 20º cos 50º – (1)cos 20º sin 50º
= sin (20º – 50º)
= sin ( − 30º)
= − ½
√√√√ reductions to acute angles
√ sin expansion 
√ answer
(6)
5.4 LHS= sin 2𝜃 + cos (2𝜃 – 90o)
= sin 2𝜃 + sin 2𝜃
= 2 sin 2𝜃
= 2(2sin 𝜃 cos 𝜃)
= 4 sin 𝜃 cos 𝜃
= RHS/RK
√ cos (2θ – 90º) = sin 2θ
√ simplification
√ expansion 
(3)
5.5 10sin𝑥 + 10sin𝑥.101=110
10sin𝑥(1+10)=110
10sin𝑥=101
∴ sin x = 1
∴ x = − 270º or/of x = 90º
√ split into product of 2 bases
√simplification / factorisation
√division by 11 
√ equating the exponents
√ both solutions 
(5)
      [24]
QUESTION 6
6.1 6.1 jgugsufs √ completing 
f(x) = sin 2x graph
(1)
6.2 See graph in 6.1 g(x) = cos (x – 30º)
√ y intercept 
√ end points 
√ turning point 
√x intercepts
(4)
6.3 sin 2 x = sin (90º – ( 𝑥 – 30º))
sin 2 𝑥 = sin (120º – 𝑥)
2 𝑥 = 120º − 𝑥 + k.360º or/of 2 𝑥 = 180º – (120º − 𝑥) + k. 360º
3 𝑥 = 120º + k. 360º or/of 𝑥 = 60º + k. 360º
∴ 𝑥 = 40º + k. 120º or/of 𝑥 = 60º + k. 360º ; k 𝜖 Z
k = 0 : 𝜃 = 40º ; 60º
k = − 1 : 𝜃 = – 80º
√ co-ratio on RHS
√ simplification
√√ = 40º + k. 120º
√ x = 60º + k. 360º
√√ solutions
(6)
      [11]
QUESTION 7
7.1

tan y = PB 
             k
∴ PB = k.tan y
BC =   PB  
          BC
∴ BC =   PB  
            tan x
Hence BC = k.tan y
                      tan x

√ use of tan ratio
√ PB = k.tan y
√ BC =   PB  
            tan x
(3)
7.2 (AC)2 = (4,73)2 + (3)2 – 2(4,73)(3)( cos 100º)
AC = 6,03 m
√ use of cosine rule
√correct substitution in cosine rule
√ answer 
(3)
      [6]
QUESTION 8
8.1.1 BÂE = 90º ( ∠ in a semi-circle ) √ statement / S
√ reason / R
(2)
8.1.2 1 = 40º ( sum of ∠ s of Δ ) √ statement / S
√ reason / R
(2)
8.1.3 C1 = 40º (∠s subtended by AB OR ∠s in the same segment) √ statement / S
√ reason / R
(2)
8.1.4 2 = 62º (ext. ∠ of cyclic quad.) √ statement / S
√ reason / R
(2)
8.1.5 AB̂D = 62º (∠s subtended by AD OR ∠s in the same segment OR ext. ∠ of cyclic quad.) √ statement / S
√ reason / R
(2)
8.2 equal to the angle in the alternate segment/ √ answer  (1)
8.3

R.T.P / Te Bewys: STUR cyclic 
Proof : Û2 = 𝑥 (tan chord thm)
3 = 𝑦 (tan chord thm)
2 = 180º – (x + y) ( ∠ s on str line)

OR

2 = 180º – (x + y) (3 ∠ s Δ)
T + R̂2 = 180º
STUR cyclic (opposite angles are suppl.)

√ statement / S
√ reason / R
√ S & R
√ S & R
√ opp. ∠ s of quad, supplementary
(5)
8.4 PN = NQ = 8 units (line from the centre ⊥ chord)
M P2 = 62 + 82 (Pyth. Theorem)
∴ MP = 10 units
MP = RM = MT = 10 (radii)
∴ RT = 20 units
√ S & R
√ S & R
√ S & R
√ answer
(4)
      [20]
QUESTION 9
9.1.1 AD = AC n  (prop theorem; DC II EF)
DE    CF
12 = AC
 3      5
20 = AC
√ S & R
√ Substitution
√ answer
(3)
9.1.2 AO = 10  (diagonals of a parallelogram bisect) √ answer (1)
9.1.3  9.1.3 ajyhgda √ S & R
√ statement / S
√ answer
(3)
9.2 9.2 auighdad

(Area => Oppervlakte)
Area  Δ ADC  = 16
    Area Δ AEF       2
Area ΔADO = 1
   Area ΔADC     2
√simplification

OR

√use of area rule
√ area of ΔADO

(3) 
      [10]
QUESTION 10
 10.1   10.1 auygduya (6) 
Construction: Mark D on PQ and E on PR such that PD = ST and PE = SU. Join DE.
Proof: In ΔPDE and ΔSTU
P ̂= Ŝ
(given) 
PD = ST (construction) 
PE = SU (construction) 
ΔPDE ≡ ΔSTU (SAS)
∴ D̂1 = T   ( ≡ Δ′𝑠)
But: Q̂ = T (given) 
∴ D̂1 = Q̂
∴ DE || QR (corr. ∠ s =) 
∴ PDPE   (prop. theorem; DE || QR)
   PQ    PR
∴ ST =  SU
   PQ     PR
√construction
√ S & R
√  D̂1 = T̂
√  D̂1 = Q̂
√  reason for lines∥
√ prop. theorem;DE || QR
;DE||QR
10.2.1  = x (tan chord thm)
3 = x (angles opp. = sides)
√ statement(S) 
√ reason(R)
√ S & R
(3)
10.2.2 R.T.Ps: ΔTOC ⦀ Δ BPC
ACB = 90º           ( ∠ in the semi-circle)
Proof : Ĉ3= Ĉ1 = 𝑥 (proved)
2 = 90º + 𝑥 (ext. ∠ of Δ) 
1 = 90º + 𝑥 (ext. ∠ of Δ) 
∴ T̂2 = B̂1
∴ Ô2 = P̂ (sum of ∠ s in Δ) 
∴ ΔTOC ⦀ Δ BPC (∠ , ∠ ,∠ )
OR
ACB = 90º           ( ∠ in the semi-circle)
B2 = 90° − 𝑥 (sum of ∠s in Δ)
∴ P = 90° − 2𝑥 (ext. ∠of Δ) 
O1 = 2𝑥 (∠ at centre = 2 × ∠ at circum.)
∴ O2 = 90° − 2𝑥 (SO ⊥ AB)
∴ O2 = P
𝐶3 = 𝐶1 = 𝑥 (proved above)
∴ ΔTOC|||ΔBPC(∠, ∠, ∠)

√ S & R
√ S
√ S & R
√ S
√ R

OR

√ S & R
√ S
√ S & R
√ S
√ R

(5)
10.2.3 R.T.P : TO.PO = OB.BP
Proof : TO = OC 
            BP    PC
But OC = OB (radii)
TO = OB
   BP     PC
∴ TO.PC = OB.BP
√sides in prop.
√ S
(2)
10.2.4 in ΔOPC: 
OP2 = OC2 + PC2 (pyth.theorem)
But : OB = OC  = BP   (radii)
∴ (20C)2 = OC2 + PC2
4OC2 = OC2 + PC2
∴ PC2 = 3OC2
√ S & R
√ OB = OC = BP
√(2OC)2 = OC2 + PC2
(3)
      [19]
       
TOTAL:  150
Last modified on Monday, 14 February 2022 08:18