MEMORANDUM

QUESTION 1:
MULTIPLE-CHOICE QUESTIONS

1.1 C (2)
1.2 C (2)
1.3 A (2)
1.4 D (2)
1.5 A (2)
1.6 B (2)
1.7 D (2)
1.8 B (2)
1.9 D (2)
1.10 C (2)          [20]

QUESTION 2
2.1 When a resultant/net force acts on an object, it accelerates in the direction of the force. The acceleration is directly proportional to the force and inversely proportional to the mass of the object. (2)
2.2  ​

 OPTION 1  OPTION 2
 2.2 AJGDUYA

     (4)

  • Mark awarded for arrow and label.
  • Do not penalise for length of arrows since drawing is not drawn to scale.
  • Any other additional force(s) 
  • If force(s) do not make contact with body. 

2.3 

OPTION 1 (To the right is positive)

OPTION 2 (To the right is negative)

Fnet = ma
Fnet = 0 N                   Any one 
Fg – T = ma       
15 x 9,8 - T = 0
T = 147 N

T – Wsin θ – f = ma
T – mgsin θ – f = ma
147– 22 x 9,8sin θ – 43,86 = 0
θ = 28,58°

Fnet = ma
Fnet = 0 N                    Any one 
T - Fg = ma 
T – 15 x 9,8 = 0
T = 147 N

Wsin θ + f – T = ma
mgsin θ + f – T = ma
22 x 9,8 sin θ + 43,86 – 147  = 0
θ = 28,58°

(4)
2.4
2.4.1The kinetic friction force depends on the angle of the inclined to the horizontal and nature of the surface. (2)
2.4.2

Positive marking from Question 2.3 

Marking criteria

For 15 kg block 
Fnet = ma 🗸
F - Fg – T = ma
172 – 147 – T 🗸= 15a…(1)

For 22 kg block 
T + W sinθ– f = ma
T + mg sinθ– f = ma
[T + 22 x 9,8 sin 28,58o 🗸– 43,86] 🗸= 22a 🗸
[T + 101,14 – 43,86] = 22a (2)

∴ a = 2,278 m.s-2 🗸

Fnet = ma
F - Fg – T = ma
T + Wsin θ – f = ma  Any one
T + mgsin θ – f = ma
Calculating Fg// 🗸
Substitution for the 15 kg block 🗸
Substitution for the 22 kg block  🗸
Substitution for either 15a or 22a  🗸

Answer🗸

(6)       [18]

QUESTION 3
3.1

UPWARD POSITIVE

UPWARD NEGATIVE

vf = vi + a∆t 🗸
vf = -3,28 + (-9,8) x 1,2 🗸
vf = - 15,04
vf = 15,04 m.s-1 downwards 🗸

vf = vi + a∆t 🗸
vf = 3,28 + (9,8) x 1,2 🗸
vf = 15,04 m.s-1 downwards 🗸

3.2

OPTION 1

UPWARD POSITIVE

UPWARD NEGATIVE

∆y = vi ∆t + 1 a∆t2 🗸
                   2
∆𝑦 = -3,28 x 1,2 🗸+ 1 (-9,8)1,22 🗸
                                2
∆y = -10,99
∆y = 10,99 m downwards🗸

∆y = vi∆t+ 1 a∆t2 🗸
                 2
∆y = 3,28 x 1,2 🗸+ 1 (9,8)1,22 🗸
                               2
∆𝑦 = 10,99 m downwards🗸

OPTION  2

Positive marking from Question 3.1

UPWARD POSITIVE

UPWARD NEGATIVE

vf2= vi2 + 2a∆y 🗸
-15,042 🗸 = -3,282 + 2 (-9,8) ∆y 🗸
∆y = 10,99 m downwards 🗸

vf2 = vi2 + 2a∆𝑦 🗸
15,042 🗸= 3,282 + 2 (9,8) ∆y 🗸
∆y= 10,99 m downwards 🗸

OPTION 3

Positive marking from Question 3.1

UPWARD POSITIVE

UPWARD NEGATIVE

∆y = vf + vi Δt
            2
∆y = -15,04 + (-3,28)x1,2 
                 2
∆y = -10,99 m
∆y = 10,99 m downwards

∆y = vf + vi Δt
            2
∆y = 15,04 + 3,28 ×  1,2
                 2
∆y = 10,99 m downwards

(4)

3.3

OPTION 1

 

UPWARD POSITIVE

UPWARD NEGATIVE

vf2= vi2 + 2a∆y
vf2= -3,282 + 2 (-9,8) (30)
vf2= - 24,47 m.s-1
vf2= 24,47 m.s-1 downwards

vf2= vi2 + 2a∆y
vf2= 3,282 + 2 (9,8) (30)
vf2= 24,47 m.s-1 downwards

 
 

OPTION 2

(3)

UPWARD POSITIVE

UPWARD NEGATIVE

∆y = vi∆t+ 1 a∆t2
                 2
-30 = -3,28∆𝑡 + 1 (-9,8)∆𝑡2
                         2
∆𝑡 = 2,16 s
vf = vi + a∆t
vf = -3,28 + (-9,8)(2,16)
vf= -24,45 m.s-1
vf = 24,45 m.s-1 downwards

∆y = vi∆t+ 1 a∆t2
                 2
30 = 3,28∆𝑡 + 1 (9,8)∆𝑡2
                       2
∆t = 2,16 s
vf = vi + a∆t
vf = 3,28 + (9,8)(2,16)
vf = 24,45 m.s-1 downwards 

 

3.4

Positive marking from Question 3.2

(4)

UPWARD POSITIVE

UPWARD NEGATIVE

Fnet.∆t = m(vf - vi)
205 x 0,1 = 0,5 [𝑣𝑓 – (- 24,47)]
vf= 16,53 m.s-1 upwards

Fnet. ∆t = m(vf - vi)
-205 x 0,1  = 0,5 (vf– 24,47)]
vf= -16,53 m.s-1
vf = 16,53 m.s-1 upwards

3.5

OPTION 1

 

Positive marking from Question 3.1 and 3.3

UPWARD POSITIVE

UPWARD NEGATIVE

vf2= vi2 + 2a∆y
02  = 16,532 + 2 (-9,8) ∆y
∆y = 13,94 m
width of window 
= 30 – (10,99+13,94)
= 5,07 m

vf2= vi2 + 2a∆y
02  = -16,532 + 2 (9,8) ∆y
∆y = - 13,94 m
width of window 
= 30 – (10,99 +13,94)
= 5,07 m

 
 

OPTION 2

(5)

Wnet = ∆Ek
Fnet ∆y cos θ = ∆Ek
Fg∆y cos θ = 1 mvf2 - 1 mvi          Any one
                      2            2
4,9 ∆ycos 180o = 0 - 1 x 0,5 x 16,532
                                 2
∆y = 13,94 m
width of window 
= 30 – (10,99 + 13,94)
= 5,07 m

[19]

[19]

QUESTION 4
4.1 In an isolated system total linear momentum is conserved. (2)
4.2
4.2.1

  • MEi = MEf
    mgh1 + ½ mvi2 = mgh2 + ½ mvf2
    0 + ½ x 2,005 x vi2 = 2,005 x 9,8 x 0,06 + 0
    vi = 1,08 m.s-1
    ∑pi = ∑pf                       Any one
    mblockviblock + mbulletvibullet = (mblock + mbullet) vf
    0 + 0,005 x vibullet = 2,005 x 1,08
    vbullet = 433,08 m.s-1 right       (5)

4.2.2

  • Positive marking from Question 4.2.1
    ∑pi = ∑pf
    (mgun + mbullet)vi = mgunvfgun + mbulletvfbullet =                 Any one
    0 = 5 x vf(gun)+ 0,005 x 433,08
    vf(gun= - 0,43 m.s-1
    vf(gun = 0,43 m.s-1 left       (3)

[10]

QUESTION 5
5.1 In an isolated system the total mechanical energy is conserved. (2)
5.2

  • MEi = MEf
    (Ep + Ek)A = (Ep + Ek)B
    mgh1 + Ek(A) = mgh2 + Ek(B)
    55 x 9,8 x 15 + 0 = 0 + Ek(B)           Any one
    Ek(B) = 8085 J (3)

5.3

  • The net work done on an object is equal to the object’s change in kinetic energy.
    OR
  • The work done by a net force is equal to the object’s change in kinetic energy.  (2)

5.4
5.4.1 Positive marking from Question 5.2

  • OPTION 1
    Wner = ∆Ek
    Wf + WFg// = ∆Ek
    f x ∆x cosθ + mgsin θ ∆x cos θ = ∆Ek           Any one
    15 x 10 cos180o + 55 x 9,8 sin 15o x 10 cos 180o = 0 – Eki
    Eki = 1545,035 J
  • OPTION 2
    Wnc = ∆Ek + ∆Ep
    Wf = ∆Ek + ∆Ep
    f x ∆x cosθ = ∆Ep + ∆Ek        Any one
    15 x 10 cos180o = [55 x 9,8 x (10 sin15o)] - 0 + 0 - Eki
    -150 = 1395,035 - Eki
    Eki = 1545,035 J
  • OPTION 3
    Wner = ∆Ek
    Wf + WFg = ∆Ek              Any one
    f x ∆x cosθ + mg ∆xcos θ = ∆Ek
    15 x 10 cos180o + 55 x 9,8 x 10 cos (90 + 15) = 0 – Eki
    Eki = 1545,035 J (4)

5.4.2

OPTION 1/OPSIE 1

OPTION 2/OPSIE 2

Wnet = ∆Ek
Wf = ∆Ek                           Any one
f x ∆x cosθ = ∆Ek
f x 10 cos180o 🗸 = 1545,035 🗸 - 8085 🗸
= 654,00 N 🗸

Wnc = ∆Ek + ∆Ep
Wf = ∆Ek + ∆Ep      Any one
f x ∆x cosθ = ∆Ek + ∆Ep 
f x 10 cos180o 🗸= 1545,035 🗸 - 8085 🗸
f = 654,00 N 🗸

Related Items

(5)    [16]

QUESTION 6
6.1 Doppler effect  (1)
6.2 AWAY. The observed frequency is less than the source frequency.  (2)
6.3 As the listener’s velocity increases, the observed frequency decreases. (2)
6.4 The intercept on the vertical axis represents the frequency of the source, fs. (2)
6.5

OPTION 1

OPTION 2

Gradient = 492 - 470 🗸
                   5 - 20
= - 22
     15
= - fs 🗸
     v
22 🗸= - fs           🗸
  15       340
fs = 498,67 Hz 🗸

fL =  v ±vL fs 🗸
        v ±vs
492 🗸= 340 - 15 🗸🗸x fs
               340
fs = 499,34 Hz 🗸

OPTION 3

fL =  v ±vL fs 🗸
        v ±vs
470 🗸= 340 - 15 🗸🗸x fs
               340
fs = 499,38 Hz 🗸
Range (498,67 Hz – 499,38 Hz)

(5)
6.6

OPTION 1

OPTION 2

OPTION 3

v = fλ
340 = 498,67 λ 🗸
𝜆 = 0,68 m 🗸
The wavelength produced by the tuning fork is less than the required wavelength.
∴ It is not suitable. 🗸

v = fλ
340 = 499,34 λ 🗸
𝜆 = 0,68 m 🗸
The wavelength produced by the tuning fork is less than the required wavelength.
∴ It is not suitable. 🗸

v = fλ
340 = 499,38 λ 🗸
𝜆 = 0,68 m 🗸
The wavelength produced by the tuning fork is less than the required wavelength.
∴ It is not suitable. 🗸

(3) [15]

QUESTION 7
7.1

  • n = Q
         qe
    n = 2 x10-6
         1,6 x10-19
    n = 1,25 x 1013 (3)

7.2

7.2 aighudya (3)

Criteria for marking

  • Correct shape
  • Direction of electric field
  • Lines not crossing each other 

7.3
7.3.1

  • vf = vi + a∆t
    6,25 x 103 = 0 + 2 x 10-3 a       Any one 
    a = 3,125 x 106 m.s-2
    Fnet = ma
    Fnet = 5 x 10-6 x 3,125 x 106
    Fnet = 15,625 N
    Enet = Fnet
               q
    Enet = 15,625
              2 x10-6
    Enet = 7,81 x 106 N.C-1   (6)
 

7.3.2

Positive marking from Question 7.3.1

   

OPTION 1

OPTION 2

   

E = kQ 🗸
       r2
7,81 x 106 = 9 x109 x 2 x10-6 🗸
                            r2
∴ r = 4,80 x 10-2 m 🗸

vf2 = vi2 + 2a Δx 🗸
(6,25 x 103)2 = 02 + 2(3,125 x 106)Δx 🗸
Δx = 6,25 m 🗸

   

Using equations of motion

   

OPTION 3/OPSIE 3

OPTION/OPSIE 4

   

Δx = ½(vf + vi) Δt 🗸
= ½(6,25 x 103+ 0)(2 x 10-3) 🗸
Δx = 6,25 m 🗸

Δx = vi Δt + ½ a Δt² 🗸
= 0 + ½(3,125 x 106)(2 x 10-3)² 🗸
Δx = 6,25 m 🗸

7.3.3

Positive marking from Question 7.3.1 and 7.3.2

 

 

 

 

(4)

OPTION 1

OPTION 2

FE = kQ1Q2🗸
            r 2
🗸                                           🗸
15,625   = 9 x109x Q x 2 x10-6
                    (4,80 x10-2 )2
∴ Q = 2,00 x 10-6 C 🗸

FE = kQ1Q2 🗸
           r 2

15,625 🗸= (9 x 109)(Q1)(2 x 10-6)
                             6,25² 🗸
∴ Q = 3,39 x 10-2 C 🗸

[19]

QUESTION  8
8.1 Resistance (1)
8.2
8.2.1

  • Gradient = 4,2 - 0,2
                      24 - 0

       6
    = 1
     emf
       1   = 1
    emf     6

8.2.2

Positive marking from Question 8.2.1

OPTION 1

OPTION 2

Intercept on vertical axis =   r       
                                           emf
0,2 =   r   🗸
       emf
0,2 = r 🗸
        6
r = 1,2 Ω 🗸

𝜀 = I (R + r ) 🗸
6 =  1   (24 + r ) 🗸
      4,2
r = 1,2 Ω 🗸

8.3
8.3.1

OPTION 1

OPTION 2

P = VI 🗸
3 = I x 1,5 🗸
I = 2 A 🗸

P =2
      R
3 = 1,52
       R
R = 0,75 Ω
P = I2 R 🗸
3 = I2 x 0,75 🗸
I = 2 A 🗸

8.3.2

Positive marking from Question 8.2.1en 8.2.2

OPTION 1

OPTION 2

P =    V2      
      Rtoy car
3 =     1,52       🗸
     Rtoy car
Rtoy car = 0,75 Ω
emf = I (Rext + r ) 🗸
6 = 2 (Rext + 1,2) 🗸
Rext = 1,8 Ω
Rext = Rtoy car + Rp
1,8 = 0,75 + Rp 🗸
Rp = 1,05 Ω
1 = 1 + 1
Rp R1 R2
   1    = 1 + 1 🗸
1,05     3    R
R = 1,62 Ω 🗸

P =    V2      
      Rtoy car
3 =     1,52       🗸
     Rtoy car

Rtoy car = 0,75 Ω
emf = I (Rext + r) 🗸
6 = 2 (Rext + 1,2) 🗸
Rext = 1,8 Ω
Rext = Rtoy car + Rp
1,8 = 0,75 + Rp 🗸
Rp = 1,05 Ω
Rp =   R1 R2
         R1 +R2
1,05 = 3 x R 🗸
           3 +R
R = 1,62 Ω 🗸

(6)
8.4

  • No, the external resistance will increase. Current will decrease.
  • P = I2R, P 𝛼 I2 since resistance remain constant, power will decrease. (3)

[20]

QUESTION  9
9.1 (Electric) motor (1)
9.2 Electrical energy to mechanical energy (2)
9.3 CLOCKWISE  (1)
9.4

  • Replace the split ring with slip rings.
  • Replace the cell with a resistor / ammeter / voltmeter. (2)

9.5
9.5.1

  • Paverage =2rms
                       R
    1500= 2302
                R
    R = 35,27 Ω    (3)

9.5.2

OPTION 1

OPTION 2

 
  

R = Vrms
       Irms

35,27 =    2302     🗸
                Irms
Irms = 6,52 A
Irms = Imax 🗸
         √2
6,52 = Imax 🗸
         √2
Imax = 9,22 A 🗸

Paverage = VrmsIrms
1 500 = Irms x 230 🗸
Irms = 6,52 A
IrmsI max 🗸
         √2
6,52 = 𝐼𝑚𝑎𝑥 🗸
         √2
𝐼𝑚𝑎𝑥 = 9,22 A 🗸

(4)

[13]
TOTAL: 150

Last modified on Tuesday, 01 March 2022 06:40