QUESTION 1: MULTIPLE-CHOICE QUESTIONS 1.1 C (2) 1.2 C (2) 1.3 A (2) 1.4 D (2) 1.5 A (2) 1.6 B (2) 1.7 D (2) 1.8 B (2) 1.9 D (2) 1.10 C (2) [20]
QUESTION 2 2.1 When a resultant/net force acts on an object, it accelerates in the direction of the force. The acceleration is directly proportional to the force and inversely proportional to the mass of the object. (2) 2.2
OPTION 1
OPTION 2
(4)
Mark awarded for arrow and label.
Do not penalise for length of arrows since drawing is not drawn to scale.
Any other additional force(s)
If force(s) do not make contact with body.
2.3
OPTION 1 (To the right is positive)
OPTION 2 (To the right is negative)
Fnet = ma Fnet = 0 N Any one Fg – T = ma 15 x 9,8 - T = 0 T = 147 N
T – Wsin θ – f = ma T – mgsin θ – f = ma 147– 22 x 9,8sin θ – 43,86 = 0 θ = 28,58°
Fnet = ma Fnet = 0 N Any one T - Fg = ma T – 15 x 9,8 = 0 T = 147 N
Wsin θ + f – T = ma mgsin θ + f – T = ma 22 x 9,8 sin θ + 43,86 – 147 = 0 θ = 28,58°
(4) 2.4 2.4.1The kinetic friction force depends on the angle of the inclined to the horizontal and nature of the surface. (2) 2.4.2
Positive marking from Question 2.3
Marking criteria
For 15 kg block Fnet = ma 🗸 F - Fg – T = ma 172 – 147 – T 🗸= 15a…(1)
For 22 kg block T + W sinθ– f = ma T + mg sinθ– f = ma [T + 22 x 9,8 sin 28,58o 🗸– 43,86] 🗸= 22a 🗸 [T + 101,14 – 43,86] = 22a (2)
∴ a = 2,278 m.s-2 🗸
Fnet = ma F - Fg – T = ma T + Wsin θ – f = ma Any one T + mgsin θ – f = ma Calculating Fg// 🗸 Substitution for the 15 kg block🗸 Substitution for the 22 kg block 🗸 Substitution for either 15a or 22a 🗸
vf2= vi2 + 2a∆y 02 = 16,532 + 2 (-9,8) ∆y ∆y = 13,94 m width of window = 30 – (10,99+13,94) = 5,07 m
vf2= vi2 + 2a∆y 02 = -16,532 + 2 (9,8) ∆y ∆y = - 13,94 m width of window = 30 – (10,99 +13,94) = 5,07 m
OPTION 2
(5)
Wnet = ∆Ek Fnet ∆y cos θ = ∆Ek Fg∆y cos θ = 1 mvf2 - 1 mvi2 Any one 2 2 4,9 ∆ycos 180o = 0 - 1 x 0,5 x 16,532 2 ∆y = 13,94 m width of window = 30 – (10,99 + 13,94) = 5,07 m
[19]
[19]
QUESTION 4 4.1 In an isolated system total linear momentum is conserved. (2) 4.2 4.2.1
MEi = MEf mgh1 + ½ mvi2 = mgh2 + ½ mvf2 0 + ½ x 2,005 x vi2 = 2,005 x 9,8 x 0,06 + 0 vi = 1,08 m.s-1 ∑pi = ∑pf Any one mblockviblock + mbulletvibullet = (mblock + mbullet) vf 0 + 0,005 x vibullet = 2,005 x 1,08 vbullet = 433,08 m.s-1 right (5)
4.2.2
Positive marking from Question 4.2.1 ∑pi = ∑pf (mgun + mbullet)vi = mgunvfgun + mbulletvfbullet = Any one 0 = 5 x vf(gun)+ 0,005 x 433,08 vf(gun= - 0,43 m.s-1 vf(gun = 0,43 m.s-1 left (3)
[10]
QUESTION 5 5.1 In an isolated system the total mechanical energy is conserved. (2) 5.2
MEi = MEf (Ep + Ek)A = (Ep + Ek)B mgh1 + Ek(A) = mgh2 + Ek(B) 55 x 9,8 x 15 + 0 = 0 + Ek(B) Any one Ek(B) = 8085 J (3)
5.3
The net work done on an object is equal to the object’s change in kinetic energy. OR
The work done by a net force is equal to the object’s change in kinetic energy. (2)
5.4 5.4.1 Positive marking from Question 5.2
OPTION 1 Wner = ∆Ek Wf + WFg// = ∆Ek f x ∆x cosθ + mgsin θ ∆x cos θ = ∆Ek Any one 15 x 10 cos180o + 55 x 9,8 sin 15o x 10 cos 180o = 0 – Eki Eki = 1545,035 J
OPTION 2 Wnc = ∆Ek + ∆Ep Wf = ∆Ek + ∆Ep f x ∆x cosθ = ∆Ep + ∆Ek Any one 15 x 10 cos180o = [55 x 9,8 x (10 sin15o)] - 0 + 0 - Eki -150 = 1395,035 - Eki Eki = 1545,035 J
OPTION 3 Wner = ∆Ek Wf + WFg = ∆Ek Any one f x ∆x cosθ + mg ∆xcos θ = ∆Ek 15 x 10 cos180o + 55 x 9,8 x 10 cos (90 + 15) = 0 – Eki Eki = 1545,035 J (4)
5.4.2
OPTION 1/OPSIE 1
OPTION 2/OPSIE 2
Wnet = ∆Ek Wf = ∆Ek Any one f x ∆x cosθ = ∆Ek f x 10 cos180o 🗸 = 1545,035 🗸 - 8085 🗸 = 654,00 N 🗸
Wnc = ∆Ek + ∆Ep Wf = ∆Ek + ∆Ep Any one f x ∆x cosθ = ∆Ek + ∆Ep f x 10 cos180o 🗸= 1545,035 🗸 - 8085 🗸 f = 654,00 N 🗸
QUESTION 6 6.1 Doppler effect (1) 6.2 AWAY. The observed frequency is less than the source frequency. (2) 6.3 As the listener’s velocity increases, the observed frequency decreases. (2) 6.4 The intercept on the vertical axis represents the frequency of the source, fs. (2) 6.5
fL = v ±vL fs 🗸 v ±vs 470 🗸= 340 - 15 🗸🗸x fs 340 fs = 499,38 Hz 🗸 Range (498,67 Hz – 499,38 Hz)
(5) 6.6
OPTION 1
OPTION 2
OPTION 3
v = fλ 340 = 498,67 λ 🗸 𝜆 = 0,68 m 🗸 The wavelength produced by the tuning fork is less than the required wavelength. ∴ It is not suitable. 🗸
v = fλ 340 = 499,34 λ 🗸 𝜆 = 0,68 m 🗸 The wavelength produced by the tuning fork is less than the required wavelength. ∴ It is not suitable. 🗸
v = fλ 340 = 499,38 λ 🗸 𝜆 = 0,68 m 🗸 The wavelength produced by the tuning fork is less than the required wavelength. ∴ It is not suitable. 🗸
(3) [15]
QUESTION 7 7.1
n = Q qe n = 2 x10-6 1,6 x10-19 n = 1,25 x 1013 (3)
7.2
(3)
Criteria for marking
Correct shape
Direction of electric field
Lines not crossing each other
7.3 7.3.1
vf = vi + a∆t 6,25 x 103 = 0 + 2 x 10-3 a Any one a = 3,125 x 106 m.s-2 Fnet = ma Fnet = 5 x 10-6 x 3,125 x 106 Fnet = 15,625 N Enet = Fnet q Enet = 15,625 2 x10-6 Enet = 7,81 x 106 N.C-1 (6)
7.3.2
Positive marking from Question 7.3.1
OPTION 1
OPTION 2
E = kQ 🗸 r2 7,81 x 106 = 9 x109x 2 x10-6 🗸 r2 ∴ r = 4,80 x 10-2 m 🗸
vf2 = vi2 + 2a Δx 🗸 (6,25 x 103)2 = 02 + 2(3,125 x 106)Δx 🗸 Δx = 6,25 m 🗸
Using equations of motion
OPTION 3/OPSIE 3
OPTION/OPSIE 4
Δx = ½(vf + vi) Δt 🗸 = ½(6,25 x 103+ 0)(2 x 10-3) 🗸 Δx = 6,25 m 🗸
Δx = vi Δt + ½ a Δt² 🗸 = 0 + ½(3,125 x 106)(2 x 10-3)² 🗸 Δx = 6,25 m 🗸
7.3.3
Positive marking from Question 7.3.1 and 7.3.2
(4)
OPTION 1
OPTION 2
FE =kQ1Q2🗸 r 2 🗸 🗸 15,625 = 9 x109x Q x 2 x10-6 (4,80 x10-2 )2 ∴ Q = 2,00 x 10-6 C 🗸
FE = kQ1Q2 🗸 r 2
15,625 🗸= (9 x 109)(Q1)(2 x 10-6) 6,25² 🗸 ∴ Q = 3,39 x 10-2 C 🗸