MECHANICAL TECHNOLOGY: FITTING AND MACHINING
GRADE 12
NATIONAL SENIOR CERTIFICATE EXAMINATION
MEMORANDUM
MAY/JUNE 2021

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)
1.1 B ✓(1)
1.2 A ✓ (1)
1.3 C ✓ (1)
1.4 C ✓(1)
1.5 D✓ (1)
1.6 A ✓ (1)
[6]

QUESTION 2: SAFETY (GENERIC)
2.1 First aid basic treatment:

  • Examination ✓
  • Diagnosis ✓
  • Treatment ✓ (3)

2.2 Drill press (Already been switched on):

  • Never leave the drill unattended while in motion.✓
  • Switch off the drill when leaving. ✓
  • Use a brush or wooden rod to remove chips. ✓
  • When reaching around a revolving drill, be careful that your clothes do not get caught in the drill or drill chuck. ✓
  • Don't stop a revolving chuck with your hand. ✓
  • Don't adjust the drill while working. ✓
  • Don't open any guard while in motion. ✓
  • Keep hands away from action points. ✓
  • Do not force the drill bit into the material.✓
  • Apply cutting fluid if required. ✓
    (Any 2 x 1) (2)

2.3 Isolation of electrode holder:
To prevent electric shock. ✓ (1)
2.4 Disadvantages of the process layout:

  • Production is not always continuous. ✓
  • Transportation costs between process departments may be high. ✓
  • Additional time is spent in testing and sorting as the product moves to the different departments. ✓
  • Damage to fragile goods may result from extra handling. ✓
    (Any 2 x 1) (2)

2.5 Advantages of the product layout:

  • Handling of material is limited to a minimum.✓
  • Time period of manufacturing cycle is less. ✓
  • Production control is almost automatic. ✓
  • Control over operations is easier. ✓
  • Greater use of unskilled labour is possible. ✓
  • Less total inspection is required. ✓
  • Less total floor space is needed per unit of production. ✓
    (Any 2 x 1) (2)

[10]

QUESTION 3: MATERIALS (GENERIC)
3.1 Heat-treatment:

  • Heat the metal slowly to a certain temperature. ✓
  • Soak the metal for a certain period to ensure a uniform temperature. ✓
  • Cool the metal at a certain rate to room temperature. ✓ (3)

3.2 Quenching mediums:

  • Water ✓
  • Brine✓
  • Liquid salts ✓
  • Oil ✓
  • Soluble oil and water ✓
  • Sand ✓
  • Molten lead ✓
  • Air ✓
  • Lime ✓
    (Any 3 x 1) (3)

3.3 Annealing:

  • To relieve internal stresses of the steel ✓
  • Soften steel to make machining possible ✓
  • Make steel ductile ✓
  • Refine grain structure ✓
  • Reduce brittleness ✓
    (Any 1 x 1) (1)

3.4 Carbon steels:

  • Low carbon steel ✓
  • Medium carbon steel ✓
  • High carbon steel ✓ (3)

3.5 Iron-carbon equilibrium diagram:

  1. Percentage carbon / carbon content ✓
  2. Temperature in °C ✓
  3. AC3 line / Higher critical temperature ✓
  4. AC1 line / Lower critical temperature ✓ (4)

[14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)
4.1 B ✓ (1)
4.2 A ✓ (1)
4.3 B ✓ (1)
4.4 C ✓ (1)
4.5 D ✓ (1)
4.6 D ✓ (1)
4.7 C ✓ (1)
4.8 A ✓ (1)
4.9 B ✓ (1)
4.10 C ✓ (1)
4.11 B ✓ (1)
4.12 B ✓ (1)
4.13 A ✓ (1)
4.14 D ✓ (1)
[14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)
5.1 Disadvantages of compound slide method:

  • The automatic feed of the machine cannot be used.✓
  • Causes poor finish. ✓
  • Only short tapers can be cut. ✓
  • It causes fatigue in the operator. ✓
    (Any 3 x 1) (3)

5.2 Taper calculations:
5.2.1 Diameter of taper:
tan θ D - d
      2     2 x l
tan 10 165 - d
       2       2 x 10
420 tan5º = 165 - d
d =165 - 36,75
d =128,25 mm (4)

5.2.2 Tailstock set-over:
x = L(D - d)
       2 x l
x = 325(165 - 128,25)
             2 x 210
x = 28,44 mm (3)

5.3 Calculation of parallel key:
5.3.1  Width = D/4
55/4
= 13,75 mm (2)

5.3.2 Thickness = D/6
55/6
= 9,17 mm (2)

5.3.3 Length = 1,5 diameterof shaft
= 1,5 x 55
= 82,5 mm (2)
5.4 Advantages of up-cut milling:

  • Heavier cuts can be taken. ✓
  • When hard steels are cut, the total cutting pressure is absorbed by the material at the back of the edge. ✓
  • When milling material with a hard scale, the cut is started under the scale where material is softer, extending the life of the cutter✓
  • A courser feed can be used. ✓
  • The strain on the cutter and arbor is less. ✓
  • Less vibration experienced on machine. ✓
    (Any 2 x 1) (2)

[18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)
6.1 Gear calculations:
6.1.1 Number of teeth:
Module = PCD
                  T
T = PCD
        m
=136
    4
= 34 teeth (2)

6.1.2 Dedendum:
Dedendum = 1,157(m)   = 1,25(m)
= 1,157 x 4  OR             = 1,25 x 4
= 4,63 mm                      = 5mm (2)

6.1.3 Outside diameter:
OD = PCD + 2(m)    = m(T + 2)
= 136 + 2(4)    OR   = 4(34 + 2)
= 144 mm                 = 144 mm (2)

6.1.4 Circular pitch:
CP = m x π
= 4 x π
= 12.57mm (2)

6.2 Dove tail calculations:
w = 190 – 2(DE)
M = w + 2 (AC) + 2 (R) or M = w + 2 ( AC +R)

6.2.1 Minimum width of dove tail (w):
Calculate DE:
tan a = DE 
            AD
DE = ADtan a
= 38 tan30º
= 21,94mm

OR
tan θ = AD 
            ED
tan60º = 38 
              ED
ED =   38   
         tan60º
= 21,94 mm

w = 190 - 2(DE)
= 190 - 2(21,94)
= 190 - 43,88
= 146,12mm (6)

6.2.2 Distance over the rollers (M):
Calculate AC:
tan α = BC 
            AC
AC =  BC  
         tan a
=   15   
  tan30º
= 25,98mm
M = w + 2(AC) + 2(R)
= 146,12 + 2(25,98) + 2(15)
= 146,12 + 51,96 + 30
= 228,08mm

OR
tan θ = CA 
            BC
CA = BCtanθ 
= 15 tan60º
= 25,98 mm
M = w + 2(AC + R)
= 146,12 + 2(25,98) + 2(15)
= 146,12 + 81,96
= 228,08mm(6)

6.3 Milling of spur gear:
6.3.1 Indexing:
Indexing = 40/n
Indexing = 40/A
40/160
= ¼ x 6/6
6/24 
Approximate indexing:
No full turns and 6 holes on a 24-hole circle ✓
OR
No full turns and 7 holes on a 28-hole circle ✓ (3)

6.3.2 Change gears:
DR = (A - n) x 40/A
DDN
DR = (160 - 163) x 40/160
DDN
= -3 x 40/160
=-120  
   160
3/48/8
DR = 24/32
DDN (5)
[28]

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)
7.1 Reading:
Reading = 7,90 mm (2)
7.2 Brinell hardness test:

  • Select the desired load to apply to the specimen. ✓
  • The specimen is raised to be in contact with the Brinell ball by turning the hand wheel. ✓
  • The load is then applied for about 15 - 30 seconds ✓
  • Release the load from the specimen. ✓
  • Measure the diameter of the impression.✓
  • Determine the Brinell hardness number. ✓ (6)

7.3 The tensile tester:

  • Yield stress ✓
  • Ultimate / maximum tensile stress ✓
  • Elongation percentage ✓
  • Break stress ✓
  • Limit of proportionality✓
  • Elastic limit ✓
  • Strain ✓
  • Ductility ✓
    (Any 3 x 1) (3)

7.4 Screw thread micrometer:
Identify:
7.4.1 Screw thread micrometer ✓ (1)
Function:
7.4.2 Measure the pitch diameter ✓ of a screw thread. (1)
[13]

QUESTION 8: FORCES (SPECIFIC)
8.1 Magnitude and direction of the equilibrant:
15
8.1.1 Sum of the horizontal components (HC):
ΣHC = 280cos45º + 120cos0º - 150cos90º - 250cos30º
= 197,99 + 120 - 0 - 216,51
= 101,48 Ν

OR

Related Items

Force HC (x) Total
120 N 120cos0º 120N 
280 N 280cos 45º 197,99 N
250 N 250cos 210º -216,51 N 
150 N 150cos 270º 0 N 
  Total: 101,48 N

(4)
8.1.2 Sum of the vertical components (VC):
ΣVC = 280sin45º + 120sin0º - 150sin90º 250sin30º
= 197,99 + 0 - 150 - 125
= -77,01 N

OR

Force HC (x) Total
120 N 120cos0º 120N 
280 N 280cos 45º 197,99 N
250 N 250cos 210º -125 N 
150 N 150cos 270º -150 N 
  Total: -77.01 N

(4)
8.1.3 Magnitude of the equilibrium force:
E2 = VC2 + HC2
E = √(77,01)2 + (101.48)2
= 127,39 N (3)
8.1.4 Direction of the equilibrium force:
16
tanθ = VC 
           HC
tanθ = 77.01 
          101,48
θ = 37,19º
E = 127,39 N at 37,19° N of W (3)
8.2 Magnitudes of the reactions in supports A and B:
17
Calculate A:
Take moments about B:
ΣCWM = ΣACM
A x 6 = (285 x 2,7) + (165 x 4,2) + (345 x 5,4)
A x 6 = 769,5 + 693 + 1863
A x 6 = 3325,5
A = 3325,5
           6
A = 554,25 N

Calculate B:
Take moments about A:
ΣCWM = ΣACM
(345 x 0,6) + (165 x 1,8) + (285 x 3,3) = 6 x B
207 + 297 + 940,5 = 6 x B
1444,5 = 6 x B
1444,5 = B
    6
= 240,75 N = B (8)

8.3 Stress and Strain:
8.3.1 The resistance area of the bush:
A = π(D2 - d2) 
            4
A = π(0,0582 - 0,0422) 
A  =1,26 x 10-3 m(2)

8.3.2 The stress in the material:
σ = F/A
=  50 x 10 3
   1,26 x 10-3
= 39682539,68 Pa
= 39,68 MPa (3)

8.3.3 Strain:
ε = Δl/l
= 0,975
     68
= 14,34 x 10-3
(If any unit indicated, then NO mark for final answer) (3)

8.3.4 Young's modulus:
E = σ/ε
= 39,68 x 106
   14,34 x 10
= 2,77 x 109 Pa
= 2,77 GPa (3)
[33]

QUESTION 9: MAINTENANCE (SPECIFIC)
9.1 Lack of preventative maintenance:

  • Risk of injury or death. ✓
  • Financial loss.✓
  • Damage to parts.✓
  • Loss of production time. ✓
    (Any 2 x 1) (2)

9.2 Malfunctioning of chain drives:

  • Uncovered chain drives not cleaned. ✓
  • Tensioning device is not working efficiently.✓
  • Chain is not inspected regularly for elongation. ✓
  • Chain drive is not aligned. ✓
  • Wear and tear of chain. ✓
  • Wear of sprocket teeth.✓
  • Lack of lubrication. ✓
  • Chain drive has been overloaded. ✓
    (Any 2 x 1) (2)

9.3 Wear on a gear drive system:

  • Checking and replacement of lubrication levels. ✓
  • Ensuring that gears are properly secured to shaft. ✓
  • Cleaning and replacement of oil filter. ✓
  • Reporting excessive noise, wear, vibration and overheating for expert attention. ✓
  • Cleaning of gears regularly. ✓
    (Any 2 x 1) (2)

9.4 Property of materials:
9.4.1 Polyvinyl chloride (PVC):

  • Can be re-heated and re-shaped ✓
  • Flexible ✓
  • Rubber like substance and makes a dull sound when dropped.✓
  • Can be modified to suit most applications. ✓
  • Can be welded (plastic welding). ✓
  • Can be bonded with an adhesive. ✓
  • Weather resistant ✓
  • Water proof ✓
  • Easy to work with. ✓
  • Light weight ✓
  • Recyclable ✓
  • Corrosion resistant ✓
    (Any 2 x 1) (2)

9.4.2 Carbon fibre:

  • Cannot be re-heated and re-shaped ✓
  • Tough and strong material. ✓
  • Light weight ✓
  • Weather resistant✓
  • Heat resistant✓
  • Enhance strength of plastic by entrenchment✓
  • Highly electrically conductive✓
    (Any 2 x 1) (2)

9.4.3 Bakelite:

  • Electrically non-conductor (electrical insulator) ✓
  • Heat resistant ✓
  • Well moulded into specific shapes ✓
  • Weather resistant✓
  • Cannot be re-heated and re-shaped ✓
    (Any 2 x 1) (2)

9.5 Thermoplastic composites or thermo-hardened (thermosetting) composites:
9.5.1 Vesconite:
Thermoplastic ✓ (1)
9.5.2 Glass fibre:
Thermo-hardened/Thermosetting ✓ (1)
9.5.3 Carbon fibre:
Thermo-hardened/Thermosetting ✓ (1)
9.6 Uses of materials.
9.6.1 Teflon:

  • Orthopaedic and prosthetic appliances✓
  • Hearing aids ✓
  • Joints✓
  • Upholstery✓
  • Mechanical parts (e.g., taps and bearings)✓
  • Electrical insulation✓
  • Non-stick coatings✓
    (Any 1 x 1) (1)

9.6.2 Carbon fibre:

Sporting and leisure equipment like: Tennis rackets, squash rackets, badminton rackets, golf clubs, hockey sticks 

  • Model airplanes ✓
  • Bicycle frames✓
  • Ski’s✓
  • Surf boards ✓
  • Boat masts ✓
  • Compressor blades✓
  • Self- lubricating gears ✓
  • Artificial satellites ✓
  • Helicopter blades ✓
  • Car bodies✓
  • Airplane parts (fuselage) ✓
    (Any 1 x 1) (1)

9.6.3 Nylon:

  • Bushes ✓
  • Gears ✓
  • Pulleys ✓
  • Fishing line✓
  • Ropes ✓
    (Any 1 x 1) (1)

[18]

QUESTION 10: JOINING METHODS (SPECIFIC)
10.1 Square Thread:
10.1.1 Mean diameter:
Pitch =        Lead          
           Numberof starts
40/2
= 20 mm
Dm = OD - P/2
= 85 - 20/2
= 75 mm (4)

10.1.2 Helix angle of the thread:
tanθ =  Lead  
           π x DM
=    40    
   π x 75
θ = tan-1(0,169765272)
= 9,63º or 9 38' (4)

10.1.3 Leading tool angle:
Leading tool angle = 90° -( helix + clearance angle)
= 90° -( 9,63° + 3)
= 77,37° or 77 22' (2)

10.1.4 Following tool angle:
Following tool angle = 90° +( helix angle - clearance angle)
= 90° +( 9,63° - 3°)
= 96,63° or 96 38' (2)

10.2 Screw thread label:

  1. Pitch diameter/mean/effective ✓
  2. Helix angle ✓
  3. Pitch / Lead ✓
  4. Root/Root length ✓ (4)

10.3 Uses of square thread:

  • Vice screws ✓
  • Brake screws ✓
  • Lead screws of lathe machines ✓
  • Scissor jacks✓
  • Milling machine table feed screws ✓
  • Hydraulic jacks (Adjustable top) ✓
    (Any 2 x 1) (2)

[18]

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)
11.1 Hydraulic calculations:
11.1.1 The fluid pressure in MPa:
Area:
AA = πD2A
           4
π(0.025)2 
        4
= 0,49 10 m OR 4,9 1 10 m
Pressure:
P = F/A
= 1,32 x 10 3
   0,49 x 10-3
= 2,69 x 106Pa
=  2,69 MPa (4)

11.1.2 The diameter of piston B:
PB = PA
FB= FA
AB    AA
6,45 x 103 = 1,32 x 103
     AB           0,49 x 10-3
6,45 x 103 = 2,69 x 106
      AB 
AB = 6,45 x 103
        2,69 x 106
AB = 2,40 x 10-3
AB  = πDB 
            4
DB = √ 4AB 
            π
= √4(2,40 x 10-3)
              π
= 0,05528m
= 55,28 mm (6)

11.2 Advantages of chain drive system over belt drive systems:

  • No slipping or creep occurs. ✓
  • Higher efficiency.✓
  • Longer life span.✓
  • Does not generate heat.✓
  • Does not undergo the same degrading effects of what time has on belts.✓
  • Much stronger✓
  • Faster speeds can be obtained.✓
    (Any 2 x 1) (2)

11.3 Functions of hydraulic reservoir:

  • A fluid storage tank. ✓
  • Promotes air separation from the fluid. ✓
  • Support for the pump and electric motor. ✓
  • Promotes heat dispersion. ✓
  • Acts as a base plate for mounting control equipment.✓
  • It allows for expansion or contraction of the hydraulic system. ✓
    (Any 2 x 1) (2)

11.4 Application for hydraulic systems:

  • Machine tools ✓
  • Clutch systems ✓
  • Brake systems ✓
  • Aircraft ✓
  • Jacks ✓
  • Missiles ✓
  • Ships✓
  • Earth moving equipment ✓
  • Punch machines ✓
  • Turbines ✓
  • Tractor lifts ✓
  • Car lifts ✓
  • Machine vices ✓
  • Jaws of life ✓
  • Trains ✓
    (Any 1 x 1) (1)

11.5 Belt drive:
11.5.1 Rotational frequency:
NDR x DDR = NDN x DDN
NDR x 95 = 85 x 255
NDR = 85 x 255
               95
NDR =228,16 r/min
OR
N = 3,8 r/sec (3)

11.5.2 Speed ratio:
Speed ratio = Diameter of driven pulley
                       Diameter of driver pulley
Speed ratio = 255 
                       95
Speed ratio = 2,68 : 1

OR
Speed ratio = Frequency of driven pulley
                      Frequency of driver pulley
Speed ratio = 228
                       85
Speed ratio = 2,68 : 1 (3)

11.6 Gear drive:
11.6.1 Rotation frequency:
NA = Product of the numberof teeth on driven gears
NF    Product of the numberof teeth on driving gears
NF = Product of the numberof teeth on driving gears
NA    Product of the numberof teeth on driven gears
NF = TA x TC x TE x NA 
            TB x TD x TF
30 x 20 x 50 x 2500
         40 x 60 x 70
= 446,43 r/min
OR
7,44 r/sec  (4)

11.6.2 Gear ratio:
GearRatio = Product of the numberof teeth on driving gears
                     Product of the numberof teeth on driven gears
= 40 x 60 x 70
  30 x 20 x 50
168000
    30000
= 5,6 : 1

OR
Speed ratio = Ninoput 
                      Noutput
=  2500  
  446,43
= 5,6:1 (3)
[28]
TOTAL: 200

Last modified on Tuesday, 01 March 2022 09:29