NOTE:
| GEOMETRY | |
| S | A mark for a correct statement | 
| R | A mark for the correct reason | 
| S/R | Award a mark if statement AND reason are both correct | 
QUESTION 1
| Temperature (in °C) | 14 | 24 | 26 | 18 | 20 | 28 | 22 | 17 | 12 | 19 | 
| Number of hot drinks sold | 410 | 258 | 192 | 324 | 328 | 156 | 280 | 384 | 230 | 280 | 

| 1.1 | As the temperature increases the number of hot drinks sold decreases. | answer | (1) | 
| 1.2 | a = 489,47 | 
 | (3) | 
| 1.3 | y = 489,47 -10,37x | substitution 314 (accept 313) answer as N0 (3) | 
| 1.4 | The outlier is the point (12; 230). | (12; 230) (1) | 
| 
 | 
 | [8] | 
QUESTION 2
| 2.1.1 | 175 | answer (1) | 
| 2.1.2 | 40 ≤ x < 50 OR 40 < x ≤ 50 | answer (1) | 
| 2.1.3 | 175 - 158 = 17 | 158 (accept 156 to 160) answer (accept 15 to 19) (2) | 
| 2.2.1 | x = 74,87 | answer (2) | 
| 2.2.2 | σ = 16,12 | answer (1) | 
| 2.2.3 | x + σ = 74,87 + 16,12 = 90,99 3 learners | 90,99 answer (2) | 
| 2.3 | x - σ = 82,7 OR x = 82,7 + 94,1 | x = 88,4 answer (3) 
 
 
 
 x = 88,4 answer (3) | 
| [12] | 
QUESTION 3
| 3.1 | mAB = tan45º = 1 | mAB = tan45º = 1 (1) | 
| 3.2 | y = x +c or tan θ = mAB | equation of AB 
 
 
 
 Substitute A & B into gradient formula | 
| 3.3 |  | mEA = -½ substitution of (4 ; -6) equation (3) | 
| 3.4.1 | tan β = -½ β = 153,43º θ = 26,565º + 45º [ext < of Δ] =71,57º | tan β = -½ value of β value of θ (3) | 
| 3.4.2 | F (0;2) B (8; -2)  | F (0;2) substitution answer (3) | 
| 3.4.3 | 
 0 = ½x + 2 OR 
 y = x + c OR 
 mAF = - 6 - 2    = -2   ∴y = -2x + 2 OR A(4;-6) | P(4;0) area ΔABP area ΔAPF answer (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 C(0;10) area ΔABT area ΔAFT answer (4) 
 
 
 
 
 
 
 
 
 
 
 
 T(2;-2) area ΔFTB area ΔTBA answer (4) 
 
 
 
 
 
 AB = √32 = 4√2 area formula substitution into area formula anser (4) | 
| 3.5 | 
 RA II Y-axis OR OFP = 153,43º - 90º  [ext ∠ of Δ] 
 PA II y-axis PA II BG | CPB = 26,57º RPB = 90º + CPB RPB answer of PAG (4) 
 
 
 
 
 
 
 
 OFP = 63,43º FEA = 180º - 63,43º =116,57º answer of PAG (4) 
 
 
 
 
 
 
 
 
 APC = 90º OR AP = PC PAC = 45º 
 BAG = θ = 71,57º answer of PAG (4) | 
| [20] | 
QUESTION 4
| 4.1.1 | S(-8;0) | x-value y-value (2) | 
| 4.1.2 | r = 2 ∴ diameter = 4 units | r = 2 (1) | 
| 4.2.1 | ER = 6 units | length of ER answer (2) | 
| 4.2.2 |  | substitution mSM answer (3) | 
| 4.2.3 | EM = MP = 3 units [radii] SM = 5 units | MP = 3 units length of SM length of SP cordinates of M (4) | 
| 4.2.4 |  | XE YE (2) 
 
 
 
 XE YE(2) | 
| 4.3 |  | x-value y-value substitution lenght of SK conclusion (5) | 
| [19] | 
QUESTION 5
| 5.1.1 | 
 tan α = - 2 = 2 | answer (1) | 
| 5.1.2 | 
 | OT =  √5 | 
| 5.1.3 |  | expansion substitution of sin α special angle ratios answer (4) 
 
 
 
 expansion substitution of sin α special angle ratios answer (4) | 
| 5.2 | 2sin(-20°).sin160° - cos 40° | - sin 20° sin 20° 1- 2sin2 20° answer (4) | 
| 5.3.1 | 3cos x.sin x + tan x.cos2 (180° - x) | reduction identity simplification single ratio (4) | 
| 5.3.2 | y∈[-2 ; 2] | critical values | 
| 5.4 | cos 3x = 4 cos 2 x - 3  | compound identity 2cos2 x -1 2sin x cos x 1- cos 2 x expansion (5) | 
| 5.5 | 32 tan x - 3tan x+1 = 54 OR ∴ x = 63,43° + k.360°; k ∈ Z or x = 243,43° + k.360°; k ∈ Z | standard from factors both equations tan x = 2 x = 63,43° + k.180°; k ∈ Z (5) OR x = 63,43° + k.360°; k ∈ Z & 243,43° + k.360°; k ∈ Z (5) | 
| 
 | 
 | [27] | 
QUESTION 6
| 6.1.1 | x ∈[- 30° ;90°] | endpoints notation (2) | 
| 6.1.2 | x = –180° or –60° | –180° –60° (2) | 
| 6.2 | f (x)= - cos(x + 90°)+ 1 | cos x + 90° answer (2) | 
| 
 | 
 | [6] | 
QUESTION 7 
| 7.1 | sin θ = AD | trig ratio trig ratio 2sinθ cosθ equating AD x as subject (5) | 
| 7.2 | 
 | use area rule correctly substitution answer (3) | 
| 
 | 
 | [8] | 
QUESTION 8
8.1 
| 8.1 | Construction: Draw diameter LT and draw TP | Constr S R S /R S R | (6) | 
or

| 8.1 | Construction: Draw diameter LT and draw KT  | construction | 
8.2 
| 8.2.1(a) | S1 = 25° | [tan chord theorem] | S R | (2) | 
| 8.2.1(b) | O1 = 50° | [∠ at centre = 2x∠ at circumference ] | S R | (2) | 
| 8.2.1(c) | R2  = W3  + W4  = 65° | [∠ s opp = radii ]  | S  R | (5) | 
| 8.2.2 | W1  = S2   = 60° | [tan chord theorem]  | S / R | (3) | 
8.3 
| 8.3.1 | OG = x + 6 | S | 
| 8.3.2 | OM ⊥ JL      [line from centre to midp of chord] OR OM ⊥ JL      [line from centre to midp of chord] | S R S R | 
| 
 | 
 | [25] | 
QUESTION 9
| 9.1 | TQ = VS               [Prop Th , TV || QS ] | S R S/R (3) | 
| 9.2 | Q1  = R1                     [∠s in the same segment  ] | S R S/R S R (5) | 
| 
 | 
 | [8] | 
QUESTION 10
| 10.1.1 | D1  = x                 [tan chord theorem ] 
 OR 
 D1  = x                 [tan chord theorem ]  | S R S R R 
 
 S R SR R | (5) 
 
 
 
 (5) | 
| 10.1.2 | In Δ ECD and ΔCBD OR In Δ ECD and ΔCBD | S / R S R 
 
 S / R S R | 
 (3) 
 
 
 
 
 (3) | 
| 10.2.1 | EC = CD = ED             [ Δ ECD ||| ΔCBD] | S CD2 = ED.BD ED = CE (3) | 
| 10.2.2 | C2  = D2  = x                 [proven ] | S R S R squaring subst CD2 = ED.BD (6) | 
| 
 | 
 | [17] | 
TOTAL: 150