NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST
  • If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out
  • Consistent accuracy applies in ALL aspects of the marking Stop marking at the second calculation error.
  • Assuming answers/values in order to solve a problem is NOT

GEOMETRY 

S

A mark for a correct statement
(A statement mark is independent of a reason)

R

A mark for the correct reason
(A reason mark may only be awarded if the statement is correct)

S/R

Award a mark if statement AND reason are both correct

MEMORANDUM

QUESTION 1 

Temperature (in °C)

14

24

26

18

20

28

22

17

12

19

Number of hot drinks sold

410

258

192

324

328

156

280

384

230

280

1 HUYGAUYDA

1.1

As the temperature increases the number of hot drinks sold decreases.
OR
As the temperature decreases the number of hot drinks sold increases. 

answer

(1)

1.2

a = 489,47
b = - 10,37
yˆ = 489,47 -10,37x

  • value of a
  • value of b
  • equation

(3)

1.3

y = 489,47 -10,37x
= 489,47 -10,37(17)
= 313,18
Number of hot drinks sold = 314
Number of litres of milk    = 314
                                             8
= 39,25
= 40 boxes of 1?

substitution

314  (accept 313)

answer as N0   (3)

1.4

The outlier is the point (12; 230).

(12; 230)  (1)

 

 

[8]

QUESTION 2
2 ajgduyad

2.1.1  175  answer (1)
2.1.2 40 ≤ x < 50  OR  40 < x ≤ 50  answer (1)
2.1.3 175 - 158 = 17 158 (accept 156 to 160)
answer
(accept 15 to 19)    (2)
2.2.1 x = 74,87 answer (2)
2.2.2 σ = 16,12 answer (1)
2.2.3 x + σ = 74,87 + 16,12 = 90,99
3 learners
90,99
answer (2)
2.3

x - σ = 82,7
x + σ = 94,1
2x = 176,8
x = 88,4
σ = 88,4 - 82,7   or   σ = 94,1 - 88,4
σ = 5,7                      σ = 5,7

OR

x = 82,7 + 94,1
             2
x = 88,4
σ = 88,4 - 82,7   or σ = 94,1 - 88,4
σ = 5,7                      σ = 5,7 

x = 88,4

answer  (3)

 

 

 

 

x = 88,4

answer (3)

    [12] 

QUESTION 3
3 uayguyda

3.1  mAB = tan45º = 1  mAB = tan45º = 1  (1)
3.2

y = x +c
-2 = 8 + c
c = -10
y = x - 10
k = 4 - 10
k = -6

or

tan θ = mAB
1 = k - (-2)
       4 - 8
k + 2 = 1 
 -4
k = -4 - 2
k = -6

equation of AB
substitute A in equation  (2)

 

 

 

 

Substitute A & B into gradient formula
equate to 1    (2)

3.3 3.3 augduyhad

mEA = -½

substitution of (4 ; -6)

equation  (3)

3.4.1 tan β = -½
β = 153,43º
θ = 26,565º + 45º  [ext < of Δ]
=71,57º

tan β = -½

value of β

value of θ   (3)

3.4.2 F (0;2)
B (8; -2)
3.4.2 ahygdyad

F (0;2)

substitution

answer   (3)

3.4.3

3.4.3 ajhbdad

0 = ½x + 2
x = 4
∴ P(4;0)
∴PA II y-axis 
Area Δ ABF = area ΔABP + area ΔAPF
Area Δ ABF = ½(6)(4) + ½ (6)(4)
Area ΔABF = 24units2

OR

3.4.3 b auyhgduyagd

y = x + c
-2 = 8 + c
c = -10
∴ T(0;-10)
Area Δ ABF = area ΔFBT - area ΔAFT
Area Δ ABF = ½(8)(12) + ½ (12)(4)
Area ΔABF = 24units2

OR

4.3.2 C aygduyagdy

mAF = - 6 - 2    = -2   ∴y = -2x + 2
             4 - 0
-2 = -2x + 2
x = 2                   ∴T(2;-2)
Area Δ ABF = area ΔFTB + area ΔTBA
Area Δ ABF = ½(6)(4) + ½ (6)(4)
Area ΔABF = 24units2

OR

A(4;-6)
B(8;-2)
3.4 AUHGDUYHA
= 24units2

P(4;0)

area ΔABP

area ΔAPF

answer  (4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C(0;10)

area ΔABT

area ΔAFT

answer  (4)

 

 

 

 

 

 

 

 

 

 

 

 

T(2;-2)

area ΔFTB

area ΔTBA

answer  (4)

 

 

 

 

 

 

AB = √32 = 4√2

area formula

substitution into area formula

anser (4)

3.5

3.5 aiygdy

RA II Y-axis
CPB = 26,57º
RPB = 90º + 26,57º
RPB = 116,57º
PB II AG
∴ PAG = RPB = 116,57º   [corresp ∠s; PB II AG]

OR

OFP = 153,43º - 90º  [ext ∠ of Δ]
OFP = 63,43º
FEA = 180º - 63,43º [co-interior ∠s; FB II EA]
=116,57º
PAG = 116,57º   [corresp ∠s; FE II PA]

3 LAST GHAHD

PA II y-axis
PCA = 45º   [vert opp ∠s = ]
PAC = 45º   [∠s of Δ]

PA II BG
BAG = θ = 71,57º   [alt ∠s; PA II BG]
PAG = 45º + 71,57º
PAG = 116,57º

CPB = 26,57º

RPB = 90º + CPB

RPB

answer of PAG  (4)

 

 

 

 

 

 

 

 

OFP = 63,43º

FEA = 180º - 63,43º

=116,57º

answer of PAG  (4)

 

 

 

 

 

 

 

 

 

APC = 90º    OR   AP = PC

PAC = 45º

 

BAG = θ = 71,57º

answer of PAG  (4)

    [20]

QUESTION 4
Q4 AGVGDVA

4.1.1  S(-8;0)  x-value
y-value  (2)
4.1.2 r = 2
∴ diameter = 4 units
r = 2 (1)
4.2.1

ER = 6 units
EM = 3 units

length of ER
answer (2)
4.2.2 4.2.2 auyygduyad substitution
mSM
answer (3)
4.2.3

EM = MP = 3 units [radii]

SM = 5 units
SP2 = 52 - 32  [pythagoras]
SP = 4 units
∴ P(-4;0)
∴M(-4;3)

MP = 3 units
length of SM
length of SP
cordinates of M (4)
4.2.4 4.2.4 AHGDYUAD

XE

Y (2)

 

 

 

 

XE

YE(2)

4.3 4.3 aihdiuahd

x-value

y-value

substitution

lenght of SK

conclusion  (5)

    [19]

QUESTION 5

5.1.1

5.1.1 auygdyua

tan α = - 2 = 2
             -1

answer

(1)

5.1.2

5.1.2 aiuygdad

OT =  √5
answer         (2)

5.1.3

5.1.3 ahgduya

expansion

substitution of sin α

special angle ratios

answer  (4)

 

 

 

 

expansion

substitution of sin α

special angle ratios

answer  (4)

5.2

2sin(-20°).sin160° - cos 40°
= 2(-sin 20°).sin 20° - cos 40°
= -2sin 2 20° - (1- 2sin 2 20°)
= -1

 - sin 20°

sin 20°

 1- 2sin2 20°

answer  (4)

5.3.1

3cos x.sin x + tan x.cos2 (180° - x)
= 3cos x.sin x + tan x.(-cos x)2
= 3cos x.sin x + sin x .cos2 x
                         cos x
= 4cos x.sin x
= 2sin 2x

reduction

identity

simplification

single ratio  (4)

5.3.2

y∈[-2 ; 2]

critical values
notation       (2)

5.4

cos 3x = 4 cos 2 x - 3
 cos x
LHS = cos 3x = cos(2x + x)
           cos x        cos x
cos 2x cos x -sin 2x sin x
                   cos x
(2 cos 2 x -1)cos x2sin x cos x sin x
          cos x                        cos x
= 2 cos 2 x -1- 2 sin 2 x
= 2 cos 2 x -1- 2(1- cos 2 x)
= 2 cos 2 x -1- 2 + 2 cos 2 x
= 4 cos 2 x - 3
= RHS

compound identity

 2cos2 x -1

2sin x cos x

1- cos 2 x

expansion   (5)

5.5

32 tan x - 3tan x+1 = 54
32tan x - 3.3tan x - 54 = 0
(3tan x - 9)(3tan x + 6) = 0
3tan x = 32     or        3tan x = -6
tan x = 2     no solution
∴ x = 63,43° + k.180°; k ∈ Z

OR

∴ x = 63,43° + k.360°; k ∈ Z or x = 243,43° + k.360°; k ∈ Z

standard from

factors

both equations

tan x = 2

x = 63,43° + k.180°;

k ∈ Z  (5)

OR

x = 63,43° + k.360°;

k ∈ Z

& 243,43° + k.360°;

k ∈ Z   (5)

 

 

[27]

QUESTION 6
q6 zuguygx yuc

6.1.1

x ∈[- 30° ;90°]

endpoints

notation (2)

6.1.2

x = –180° or –60°

 –180°

 –60° (2)

6.2

f (x)= - cos(x + 90°)+ 1
= sin x + 1

 cos x + 90°

 answer (2)

 

 

[6]

QUESTION 7 
7 A JHGDUA

7.1

sin θ = AD
            5
AD = 5 sin θ
sin 2θ = AD 
               x
AD = x sin 2θ
= x.2 sinθ cosθ
x.2 sinθ cosθ = 5sinθ
x =       5sinθ     
     2 sinθ cosθ
     5     
   2 cos θ

trig ratio

trig ratio

2sinθ cosθ

equating AD

x as subject         (5)

7.2

7.2 ahjbgduhad

use area rule correctly

substitution

answer   (3)

 

 

[8]

QUESTION 8
8.1 
8.1 aiuygcyuad

8.1

Construction: Draw diameter LT and draw TP
SLK = 90° - TLˆK  [radius ⊥ tangent]
TPL =  90°              [∠ in semi-circle]
∴ KPL = P  = 90° - TPK
= 90° – TLK [∠s same segment]
∴ SLK = Pˆ

Constr

S R

S /R

S

R

(6)

or

8.1 2 aigdiua

8.1

Construction: Draw diameter LT and draw KT 
SLK = 90° - TLK      [radius ⊥ tangent]
LKT =  90°                [∠ in half circle]
∴ Pˆ =  KTL  [∠s same segment]
= 90°- TLK
∴ SLK = P

construction
S /R
S
R
S
S / R  (6)

8.2 
8.2 aijhdua

8.2.1(a)

S1 = 25°

[tan chord theorem]

S R

(2)

8.2.1(b)

O = 50°

[∠ at centre = 2x∠ at circumference ]

S R

(2)

8.2.1(c)

R2  = W3  + W4  = 65°
P = 60°
R1 =55°

[∠ s opp = radii ]
[∠ s of equilateral ∆ ]
[opp ∠ of cyclic quad ]

S  R
S / R
S  R

(5)

8.2.2

W1  = S2   = 60°
Pˆ = 60°
∴ Wˆ 1  = Pˆ =60°
SP || TW

[tan chord theorem]
[∠ s of equilateral ∆ ]
[alt ∠ s = ]

S / R
S
R

(3)

8.3 
8.3 uhuihdas

8.3.1

OG = x + 6
∴ HM = 2x + 6

S
S  (2)

8.3.2

OM ⊥ JL      [line from centre to midp of chord]
OJ2 = JM2 + OM         [Pythagoras]
(x + 6)2  =122 + x 2
x 2 + 12x + 36 = 144 + x 2
x = 9
r =15 units

OR

OM ⊥ JL      [line from centre to midp of chord]
HJ2 = HM2 + JM2         [Pythagoras]
(12√5)2 =(2x + 6)2 +122
720 = 4x 2 + 24x + 36 + 144
0 = 4x 2 + 24x - 540
0 = x 2 + 6x - 135
0 = (x - 9)(x + 15)
x = 9
r =15 units

S R
subst into Pyth
value of x
length of radius  (5)

S R
subst into Pyth
value of x
radius  (5)

 

 

[25]

QUESTION 9
9 agduyga

9.1

TQ = VS               [Prop Th , TV || QS ]
QP    SP
VS = WR             [Prop Th , RS || VW ]
SP     RP
TQWR
   QP     RP

S  R

S/R  (3)

9.2

Q1  = R1                     [∠s in the same segment  ]
R = W          [ corres ∠s, RS || VW, RS || VW ]
∴ Q= W
Q1 = T           [ corres ∠s ,TV || QS , TV || QS]
∴ T  = W
∴TPVW is a cyclic quad [ converse ∠s in the same segment ]

S R

S/R

S

R  (5)

 

 

[8]

QUESTION 10
10 AIYGDUYGAD

10.1.1

D1  = x                 [tan chord theorem ]
C2  = D1  = x    [Tans from common pt ]
E1  = 180° - 2x     [sum of int ∠s D]

 

OR

 

D = x                 [tan chord theorem ]
C2  = x                 [tan chord theorem ]
E1  = 180° - 2x    [sum of int ∠s D ]

S R

S R

R

 

 

S R

SR

R

(5)

 

 

 

 

(5)

10.1.2

In Δ ECD and ΔCBD
C2  = B  = x         [tan chord theorem ]
D2  = B  = x        [∠s opp equal sides ]
∴ D1  = D2   = x
∴ Δ ECD  ||| ΔCBD       [∠, ∠, ∠ ]

OR

In Δ ECD and ΔCBD
C2  = B  = x         [tan chord theorem ]
D = B = x        [∠s opp equal sides ]
∴ D1  = D2   = x
E1  = C3       [3rd ∠ of ∆ ]
∴ Δ ECD ||| ΔCBD

S / R

S

R

 

 

S / R

S

R

 

(3)

 

 

 

 

 

(3)

10.2.1

EC = CD = ED             [ Δ ECD ||| ΔCBD]
BC    BD    CD
CDED
BD    CD
CD2 = ED.BD
ED = CE
∴ CD2 = CE.BD

S

CD2 = ED.BD

ED = CE  (3)

10.2.2

C2  = D2  = x                 [proven ]
BD || CE                      [alt ∠s = ]
FE = FC                  [line || one side of Δ ]
DE    CB
CF2CB2
EF2    DE2
CF2 = DE.BD  [CB = CD]
EF2       DE2
CF2BD
EF2    DE

S R

S R

squaring

subst

CD2 = ED.BD     (6)

 

 

[17]

TOTAL: 150

Last modified on Tuesday, 15 March 2022 07:11