NOTE:
GEOMETRY | |
S | A mark for a correct statement |
R | A mark for the correct reason |
S/R | Award a mark if statement AND reason are both correct |
QUESTION 1
Temperature (in °C) | 14 | 24 | 26 | 18 | 20 | 28 | 22 | 17 | 12 | 19 |
Number of hot drinks sold | 410 | 258 | 192 | 324 | 328 | 156 | 280 | 384 | 230 | 280 |
1.1 | As the temperature increases the number of hot drinks sold decreases. | answer | (1) |
1.2 | a = 489,47 |
| (3) |
1.3 | y = 489,47 -10,37x | substitution 314 (accept 313) answer as N0 (3) |
1.4 | The outlier is the point (12; 230). | (12; 230) (1) |
|
| [8] |
QUESTION 2
2.1.1 | 175 | answer (1) |
2.1.2 | 40 ≤ x < 50 OR 40 < x ≤ 50 | answer (1) |
2.1.3 | 175 - 158 = 17 | 158 (accept 156 to 160) answer (accept 15 to 19) (2) |
2.2.1 | x = 74,87 | answer (2) |
2.2.2 | σ = 16,12 | answer (1) |
2.2.3 | x + σ = 74,87 + 16,12 = 90,99 3 learners | 90,99 answer (2) |
2.3 | x - σ = 82,7 OR x = 82,7 + 94,1 | x = 88,4 answer (3)
x = 88,4 answer (3) |
[12] |
QUESTION 3
3.1 | mAB = tan45º = 1 | mAB = tan45º = 1 (1) |
3.2 | y = x +c or tan θ = mAB | equation of AB
Substitute A & B into gradient formula |
3.3 | mEA = -½ substitution of (4 ; -6) equation (3) | |
3.4.1 | tan β = -½ β = 153,43º θ = 26,565º + 45º [ext < of Δ] =71,57º | tan β = -½ value of β value of θ (3) |
3.4.2 | F (0;2) B (8; -2) | F (0;2) substitution answer (3) |
3.4.3 | 0 = ½x + 2 OR y = x + c OR mAF = - 6 - 2 = -2 ∴y = -2x + 2 OR A(4;-6) | P(4;0) area ΔABP area ΔAPF answer (4)
C(0;10) area ΔABT area ΔAFT answer (4)
T(2;-2) area ΔFTB area ΔTBA answer (4)
AB = √32 = 4√2 area formula substitution into area formula anser (4) |
3.5 | RA II Y-axis OR OFP = 153,43º - 90º [ext ∠ of Δ] PA II y-axis PA II BG | CPB = 26,57º RPB = 90º + CPB RPB answer of PAG (4)
OFP = 63,43º FEA = 180º - 63,43º =116,57º answer of PAG (4)
APC = 90º OR AP = PC PAC = 45º
BAG = θ = 71,57º answer of PAG (4) |
[20] |
QUESTION 4
4.1.1 | S(-8;0) | x-value y-value (2) |
4.1.2 | r = 2 ∴ diameter = 4 units | r = 2 (1) |
4.2.1 | ER = 6 units | length of ER answer (2) |
4.2.2 | substitution mSM answer (3) | |
4.2.3 | EM = MP = 3 units [radii] SM = 5 units | MP = 3 units length of SM length of SP cordinates of M (4) |
4.2.4 | XE YE (2)
XE YE(2) | |
4.3 | x-value y-value substitution lenght of SK conclusion (5) | |
[19] |
QUESTION 5
5.1.1 | tan α = - 2 = 2 | answer (1) |
5.1.2 | OT = √5 | |
5.1.3 | expansion substitution of sin α special angle ratios answer (4)
expansion substitution of sin α special angle ratios answer (4) |
5.2 | 2sin(-20°).sin160° - cos 40° | - sin 20° sin 20° 1- 2sin2 20° answer (4) |
5.3.1 | 3cos x.sin x + tan x.cos2 (180° - x) | reduction identity simplification single ratio (4) |
5.3.2 | y∈[-2 ; 2] | critical values |
5.4 | cos 3x = 4 cos 2 x - 3 | compound identity 2cos2 x -1 2sin x cos x 1- cos 2 x expansion (5) |
5.5 | 32 tan x - 3tan x+1 = 54 OR ∴ x = 63,43° + k.360°; k ∈ Z or x = 243,43° + k.360°; k ∈ Z | standard from factors both equations tan x = 2 x = 63,43° + k.180°; k ∈ Z (5) OR x = 63,43° + k.360°; k ∈ Z & 243,43° + k.360°; k ∈ Z (5) |
|
| [27] |
QUESTION 6
6.1.1 | x ∈[- 30° ;90°] | endpoints notation (2) |
6.1.2 | x = –180° or –60° | –180° –60° (2) |
6.2 | f (x)= - cos(x + 90°)+ 1 | cos x + 90° answer (2) |
|
| [6] |
QUESTION 7
7.1 | sin θ = AD | trig ratio trig ratio 2sinθ cosθ equating AD x as subject (5) |
7.2 | use area rule correctly substitution answer (3) | |
|
| [8] |
QUESTION 8
8.1
8.1 | Construction: Draw diameter LT and draw TP | Constr S R S /R S R | (6) |
or
8.1 | Construction: Draw diameter LT and draw KT | construction |
8.2
8.2.1(a) | S1 = 25° | [tan chord theorem] | S R | (2) |
8.2.1(b) | O1 = 50° | [∠ at centre = 2x∠ at circumference ] | S R | (2) |
8.2.1(c) | R2 = W3 + W4 = 65° | [∠ s opp = radii ] | S R | (5) |
8.2.2 | W1 = S2 = 60° | [tan chord theorem] | S / R | (3) |
8.3
8.3.1 | OG = x + 6 | S |
8.3.2 | OM ⊥ JL [line from centre to midp of chord] OR OM ⊥ JL [line from centre to midp of chord] | S R S R |
|
| [25] |
QUESTION 9
9.1 | TQ = VS [Prop Th , TV || QS ] | S R S/R (3) |
9.2 | Q1 = R1 [∠s in the same segment ] | S R S/R S R (5) |
|
| [8] |
QUESTION 10
10.1.1 | D1 = x [tan chord theorem ]
OR
D1 = x [tan chord theorem ] | S R S R R
S R SR R | (5)
(5) |
10.1.2 | In Δ ECD and ΔCBD OR In Δ ECD and ΔCBD | S / R S R
S / R S R |
(3)
(3) |
10.2.1 | EC = CD = ED [ Δ ECD ||| ΔCBD] | S CD2 = ED.BD ED = CE (3) |
10.2.2 | C2 = D2 = x [proven ] | S R S R squaring subst CD2 = ED.BD (6) |
|
| [17] |
TOTAL: 150