NOTE:
MARKING CODES | |
M | Method |
A | Accuracy |
AO | Answer only |
CA | Consistent accuracy |
F | Formula |
I | Identity |
R | Rounding |
S | Simplification |
ST | Statement |
RE | ReasonΒ |
ST RE | Statement and correct reasonΒ |
SF | Substitution correctly in correct formula |
NPU | No penalty for omitting unitsΒ |
QUESTION 1
Q | Β | M |
Β | Β | Β |
1.1 | π = β4 | βΒ AΒ Β Β (1) |
1.2 | π΄π΅2 = (β2 + 5)2 + (β4 β 0)2 | β M |
1.3 | ππΆπ·Β = β4β0 | β β 4 A Β Β Β 3 β 53,13Β° CA β 126,87Β° CAΒ Β (3) |
1.4 | π΅πΆ = 3 β (β2) = 3 + 2 = 5 unitsΒ | βΒ π΅πΆ & π΄π M |
Β | Β | [10] |
QUESTION 2Β
Q | Β | M | |
2.1.1 | π₯2 + π¦2 = 25 β¦ 1 | β π¦ = π₯ + 1 | |
2.1.2 | (3; 2): (3)2 + (2)2 = 13 | βΒ 13 | |
2.1.3 | ππππΒ Β =Β Β 0β3Β Β | βΒ β 3/4 βΒ 4/3 βΒ 25/3 = π βΒ π¦ = 4/3 π₯ + 25/3 CAΒ Β (4) | |
2.2 | 36π₯2 + 49π¦2 = 1764 | βΒ π₯2 + π¦2 = 1 | |
Β | Β | [18] | |
Β | Β | Β | Β |
QUESTION 3
Q | Β | M | |||||||
3.1.1 | βΒ SF βΒ β0,8 | (2) | |||||||
3.1.2 | βΒ Β Β Β 1 βΒ SF βΒ β1,4 | (3) | |||||||
3.2.1 | π‘πππ΄Μ = 5 = β5 OR π‘πππ΄Μ = 5 = β5 | r2 = (-12)2 + (-5)2 | βΒ π‘πππ΄ = 5 = β5 A βΒ correct quadrantΒ βΒ π = 13 A βΒ 1Β Β Β orΒ Β πππ ππ2π΄Μ = (13/-5)2 CA β 169/25 CAΒ Β (5) | Β | |||||
3.2.2 | π πππ΄ΜΒ β π πππ΄ΜΒ =Β Β 1Β Β Β β π πππ΄Μ | OR π πππ΄ΜΒ β π πππ΄ΜΒ =Β Β Β 1Β Β Β β π πππ΄Μ | βΒ Β 1Β Β π¨π«Β 13Β βΒ Β 1Β Β βΒ β109 CAΒ Β (3) | ||||||
3.2.3 | π‘πππ΄Μ = 5/12 π΄Μ = 202,62Β° | β methodΒ βΒ 22,62Β° βΒ 202,62Β° | (3) | ||||||
Β | Β | [16] |
QUESTION 4Β
Q | Β | M |
4.1 | π ππ(π β π₯). πππ ππ(2π β π₯). π‘ππ(π + π₯) | βΒ correct conversion of rad to degreesΒ βΒ π ππ(π₯) βΒ βΒ Β Β Β 1Β Β Β βΒ π‘ππ(π₯) βΒ Β Β 1Β Β Β βΒ πππ (π₯) βΒ β1.π‘ππ(π₯) βΒ βtan (π₯)Β Β Β (8) |
OR | ||
π ππ(π β π₯). πππ ππ(2π β π₯). π‘ππ(π + π₯) | βΒ correct conversion of rad to degrees | |
4.2 | πΏπ»π/πΏπΎ =Β Β Β πππ πΒ Β Β β π‘πππ | βΒ π πππ Β |
Β | Β | [13] |
QUESTION 5Β
Q | Β | M | |||
5.1 | Β | βΒ cos start and end pointΒ βΒ cos turningpointsΒ βΒ cos π₯- intercepts βΒ sin start and end point βΒ sin turningpointsΒ βΒ sin π₯- interceptsΒ Β (6) | |||
5.2.1 | 120Β° | βΒ 120Β° | (1) | ||
5.2.2 | (a) | π₯ = 30Β° and / en π₯ = 120Β° | βΒ π₯ = 30Β° βΒ π₯ = 120Β° | (2) | |
Β | (b) | 90Β° β€ π₯ β€ 150Β° | βΒ 90Β° β€ βΒ β€ 150Β° | (2) | |
Β | Β | [11] |
QUESTION 6Β
Q | Β | M |
Β | Β | |
6.1 | AB = 8 cm (opp sides of rec = ) | βΒ 8 cm ST |
6.2 | π΅πΈ = tan 30Β° | βΒ π΅πΈ = tan 30Β° M |
6.3 | sin πΈπ΅ΜπΆ Β = sin 30Β° | βΒ SF |
6.4 | π΅πΈΜπΆ = 180Β° β 30Β° β 77Β° | βΒ ST RE |
6.5 | πΆπΉ2 = πΆπΈ2 + πΉπΈ2 β 2(πΆπΈ)(πΉπΈ) cos πΆπΈΜπΉ | βΒ (9)2 + (10)2 βΒ 2(9)(10)Β cos(25Β°)Β SF |
Β | Β | [13] |
QUESTION 7Β
Q | Β | M | |
7.1 | double the size of the angle subtended by the same arcΒ at the circumference of a circle | Β | (1) |
7.2 | Β Β | ||
7.2.1 | π΄πΜπ΅ = 180Β° β 48Β° β¦(suppl. β βs) | βΒ ST RE | (1) |
7.2.2 | πΆΜ =Β Β½ (132Β°)β¦( β at centre = 2 x β at circum.) | βΒ RE βΒ 66Β° ST | Β (2) |
7.2.3 | ππ΅ΜπΈ = 90Β° β¦( tan β₯ rad) | βΒ ST βΒ RE βΒ ST RE | (3) |
7.2.4 | π·Μ Β = π΄πΈΜπ· = 42Β° β¦(β β²s opp.= sides) | βΒ ST RE βΒ ST RE | (2) |
7.2.5 | π΅πΈ2 = ππΈ2 β ππ΅2Β Β Β β¦.(Pythagoras) | βΒ M Pythagoras βΒ ST π΅πΈ2 = 24 βΒ ST π΅πΈ = β24 | (3) |
Β | Β | [12] |
QUESTION 8Β
Q | Β | M |
8.1 | supplementaryΒ | βΒ (1) |
8.2 | Β Β | Β |
8.2.1 (a) | ππΜπ = πΜ Β = π₯ (β β²s subt.chord QR ) | βΒ ST βΒ REΒ Β (2) |
8.2.2 (b) | ππΜπ = 180Β° β (58Β° + π₯) (opp. β β²s quad.) = 122Β° β π₯ | βΒ ST RE |
8.2.2 | πΜ + ππΜπ
+ ππ
Μπ = 180Β° (int. β β²s β) | βΒ ST RE |
OR | OR | |
πΜ + πΜ + πΜ = 180Β° (int. β β²s β) | βΒ ST RE | |
Β | Β | [8] |
QUESTION 9Β
Q | Β | M |
9.1 |
| βΒ ST |
9.2 | Β | Β |
9.2.1 | In βπΆπ·πΉ and βπΈπΆπΉ: | βΒ ST RE |
9.2.2 | πΆπ· = π·πΉ = πΆπΉ (βπΆπ·πΉβ¦βπΈπΆπΉ) | βΒ πΆπ· = π·πΉ = πΆπΉ ST |
9.2.3 | π·πΉ = 15 β 6 = 9 | βΒ π·πΉ = 9 A |
OR | OR | |
πΆπΉ2 = 15 Γ 9 (from 9.2.2) | βΒ πΆπΉ2 = 15 Γ 9 A | |
9.2.4 | πΆπ· = 12 = 4 | βΒ 12 SF A |
9.2.5 | πΈπΆΜπΉ = 44Β° + 52Β° = 96Β° β 90Β° | βΒ ST |
Β | OR | |
Β | πΆπ·ΜπΈ = 180Β° β 44Β° β 52Β° = 86Β° β 90Β° | βΒ ST βΒ ST REΒ Β (2) |
Β | Β | [16] |
QUESTION 10Β
Q | Β | M | |
10.1 | Β | Β | |
10.1.1 | π΄Μ = 30Β° ΓΒ Β πΒ Β | βΒ ΓΒ πΒ Β | |
10.1.2 | π = ππ | β F | (3) |
10.1.3 | Area of a sector / πππ π£ππ β²π π πππ‘ππ = π2π | βΒ F | (3) |
10.1.4 | Area of a sector / πππ π£ππ β²π π πππ‘ππ = π2π | βΒ SF | (4) |
10.2 | Β | |
10.2.1 | π = 2ππ | βΒ F |
10.2.2 | π£ = ππ·π | βΒ F |
OR | OR | |
π£ = ππ | βΒ F | |
10.2.3 | Linear speed of large pulleyΒ | βΒ F |
10.3 | Β | |
Β | 4β2 β 4πβ + π₯2 = 0 | βΒ F |
OR | OR | |
πΆπΈ = 4 (line from centre perpendicular to chord) | βΒ ST RE βΒ ST RE βΒ ππΈ2 =Β (5)2 β (4)2 SF βΒ ππΈ = 3 cmΒ Β CA βΒ πΈπΊ = 2 cmΒ Β CAΒ Β (5) | |
Β | Β | [26] |
QUESTION 11Β
Q | Β | M | |
11.1 | Β | ||
Β | β F OR β F | ||
11.2 | Β | Β | |
Β | β F | (3)Β | |
Β | Β | [7] | |
Β | TOTAL: | 150 |