MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
NOVEMBER 2020

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • Consistent accuracy applies in all aspects of the marking memorandum.

REMEMBER: (A) next o the description of a tick implies accuracy mark

QUESTION 1 

1.1.1

x 2 - 6x = 0
x(x - 6) = 0
x = 0 or x = 6

common factor
both answers
(2)

1.1.2

x2 + 10x + 8 = 0
x = - b ± √b2 - 4ac
             2a
= -10 ±√102 - 4(1)(8)
              2(1)
-10 ± √68
         2
x = -0,88 or x = -9,12

substitution into the correct formula
- 0,88
- 9,12
(3)

1.1.3

(1- x)(x + 2) < 0
Critical values:
x = 1 or  x = - 2
7

critical values
correct method
answer
(3)

1.1.4

x +18 = x - 2
x +18 = x2 - 4x + 4
0 = x2 - 5x -14
(x - 7)(x + 2) = 0
x = 7 or  x ≠ -2

squaring both sides (m)
standard form
factors
both answers
rejection of x = - 2
(5)

1.2

x + y = 3
y = 3 - x........... (1)
2x2 + 4xy - y = 15................ (2)
Substitute (1) into (2):
2x2 + 4x(3 - x)- (3 - x) = 15
2x2 +12x - 4x2 - 3 + x -15 = 0
- 2x2 +13x -18 = 0 2x2 -13x +18 = 0
(2x - 9)(x - 2) = 0
x = 9/2 or  x = 2
y = - 3/2   or  y = 1

OR
x + y = 3
x = 3 - y........... (1)
2x2 + 4xy - y = 15................ (2)
Substitute (1) into (2):
2(3 - y)2 + 4(3 - y) y - y = 15
2y 2 -12y + 18 - 4y 2 + 12y - y -15 = 0
- 2y 2 - y + 3 = 0
2 y 2 + y - 3 = 0
(2y + 3)(y - 1) = 0
y = - 3/2   or  y = 1
x =9/2 or  x = 2

y subject of the formula
substitution
standard form
factors
x-values
y-values
(6)

OR
x subject of the formula
substitution
standard form
factors
y-values
x-values
(6)

1.3 

n200 < 5300
(n2)100  < (53 )100
(n)100 < (125)100
n2 < 125
Maximum value of n is 11.

OR
200 log n < 300 log 5
n < 103/2 log5
n < 11,18
n = 11

OR
n200 < 5300
(n2)100  < (53)100
√n< 5
n < 53/
n < 11,18
n = 11

OR
n200 < 5300 
n < 5300/200
n < 11,18
n = 11

(n2)100  < (53 )100
n2 < 125
11

(3)

OR
use of logs
n < 11,18
11
(3)

OR
(n2)100  < (53)100 
n < 11,18
n = 11

OR
n < 5300/200
n < 11,18
n = 11


QUESTION 2

2.1

7 ; x ; y ; –11 ; …
a = 7
a + 3d = –11 7 + 3d = –11
d = –6
x = a + d = 7 + (–6) = 1
y = a + 2d = 7 + 2(–6) = –5 

OR
a + 3d = –11
3d = -11- 7
3d = -18 d = -6 x = 1
y = -5

OR
x - 7 = y - x  and  y - x = -11 - y
2x - 7 = y ....(1)      2 y = -11 + x ...(2)
(1) into (2)
2(2x - 7) = -11 + x
4x - 14 = -11 + x
3x = 3
x = 1
y = 2(1) - 7 = -5

7 + 3d = –11
d = –6
value of x
value of y
(4)

OR
3d = -11- 7
d = -6
x = 1
y = -5
(4)

OR
2 equations
substitution
value of x
value of y
(4)

2.2.1

-3 ; 6 ; 27 ; 60 ; …
8
2a = 12
a = 6 3a + b = 9 3(6) + b = 9
b = –9
a + b + c = –3 6 – 9 + c = –3
c = 0
Tn = 6n2 - 9n

second difference
a = 6
b = –9
c = 0
(4)

2.2.2

T50    = 6(50)2  - 9(50)
= 14 550
Answer Only: Full Marks

substitute 50
answer
(2)

2.2.3

9 ; 21 ; 33 ; …
a = 9
d = 12
Sn = n/2[2a + (n -1)d ]
Sn = n/2 [2(9)+ (n -1)(12)]
= n/2n [18 + 12n -12] 
= n/2[12n + 6] 
= 6n2 + 3n

a and d
substitution into the correct formula
n/2[12n + 6]  
(3)

2.2.4

- 3 + Sn = 21060
S= 21063
6n2 + 3n = 21063
6n2 + 3n - 21063 = 0
2n2 + n - 7021 = 0
n = - b ± √b2 - 4ac
              2a
n = -1 ±   (1)2 - 4(1)(-7021)
                   2(2)
n = 59 or n ≠ -119
                       2
n = 59

OR
Tn = 21060
6n2 - 9n - 21060 = 0
2n 2 - 3n - 7020 = 0
n = 60
59 first differences must be added

- 3 + Sn = 21060
equation
standard form
answer

(4)

equation
standard form
answer
(4)

    [17]

 

QUESTION 3 

3.1

9
r = 4  =
    12    3
-1 < 1/3 < 1
series is convergent ( -1 < r < 1)

12 + 4 + 4/3 +... or 36(1/3)
value of r
-1 < r < 1
(3)

3.2

10

a = 4.32- p
r = 1/3
S =   a   
        1 - r
 2 4.32-
 9     1 - 1/3
4.32 - p = 
              27
32- p = 3-3
2 - p = -3
p = 5

expression for a
substitution of a, r and S
simplification 4.32 - p = 
                                    27
32- p = 3-3
answer
(5)

   

[8]

 

QUESTION 4

4.1.1  x = 1
y = 2
x = 1
y = 2
(2)
4.1.2 

y = mx + c
2 = -1+ c
c = 3
y = -x + 3

or
y - y1 = m(x - x1 )
y - 2 = -1(x -1)
y - 2 = -x +1
y = -x + 3

or
y = -(x - p) + q

= -(x -1) + 2
y = -x + 3

substitution of m = –1 and (1 ; 2) 
answer(2)
4.1.3 11 vertical asymptote: x = 1 and horizontal asymptote: y = 2
x-intcept: 5/2
y-intercept: 5
shape (A) 
4.2.1 (–5 ; –8) x = - 5
y = - 8
(2)
4.2.2 y ≥ - 8  or [-8;∞] answer
4.2.3 m = –5
n = g(–5) 
= ½(-5) + 9/2 
= 2 
m = –5
substitution
n = 2

4.2.4 12

13

method
correct substitution
answer

or
method
correct substitution
answer

or
method
correct substitution
answer

4.2.5 g-1: x = ½y + 9/
g-1: y = 2x - 9
changing x and y
answer
4.2.6

f (x) =½(x + 5)2 - 8
f (x) = ½(x2 +10x + 25) - 8
f (x) = ½x2 + 5x + 4,5
f / (x) = x + 5
h(x) = 2x - 9 + k
x + 5 = 2
x = -3     y = -6
(-3 ; - 6)

OR
f (x) = h(x)
½(x + 5)2 - 8 = 2x - 9 + k
½x2 + 3x + 27/2 - k = 0
x = - 3  = -3  b2 - 4ac = 0
     2(½)
y = -6
(-3 ; - 6)

/ (x)
x + 5 = 2
x = -3   y = -6
(4)

OR
equating 
turning point / △ = 0
x = -3   y = -6 (4)

    [23]

 

QUESTION 5 

5.1

A(0 ; 1)

answer (1)

5.2

9 = 3-x
3= 3- x
x = -2
B(–2 ; 9)

equating
32 = 3-x
x = -2
(3)

5.3

x ∈(0;∞) or x > 0

answer (2)

5.4

h(x) = 27.3 -x
h(x) = 3-(x - 3)
f shifted 3 units to the right

h(x) = 3-(x-3)
3 units
right
(3)

5.5

27 < 1                       3-x+3 < 1
3x
3x > 27        or         3- x+3 < 30
3x > 33                   - x + 3 < 0
x > 3                           x > 3

OR
The graph shifts 3 units to the right
Thus the y-intercept shift 3 units to the right (3 ; 1)
x > 3

3x > 27 or     3-x+3 < 30
3x > 33 or      - x + 3 < 0
x > 3 (3)

OR
translation
y-intercept
answer 
(3)

   

[12]


QUESTION 6

6.1.1

14

n = 145
i = 0,075
       12
substitution into the correct formula
answer (4)

6.1.2

A = P(1+ i)n
= 234 888,53(1 + 0.075 )12
                               12
= R253 123,54

substitution into the correct formula
answer
(2)

6.2

A = P(1- i)n
92 537,64 = 250 000(1- 0,22)n
0,37015056 = (0,78)n
n = log 0,37015056
             log 0,78
n = 4 years

substitution into the correct formula
correct use of logs
answer
(3)

6.3.1

15

72
substitution into the correct formula
answer
(3)

6.3.2

16

Amount paid: R1 500 x 60 = R90 000
Interest
= Amount paid – [Loan – Balance]
= R90  000 – [ R78 173,49323 – R16  945,00629]
= R28 771,51

OR
Balance
17
Balance = R16 945.00
Amount paid: R1 500 ´ 60 = R90 000
Interest
= Amount paid – [Loan – Balance]
= R90  000 – [ R78 173,49323 – R16  945,00629]
= R28 771,51

substitution (A)
R16 945,00629 (A)
R90 000 – [Loan – Balance]
answer
(4)

OR
substitution
R16 945,00629
R90 000 – [Loan – Balance]
answer
(4)

    [16]


QUESTION 7
 
Penalty of – 1 for notation only in 7.1

7.1

f (x) = 2x2 - 1
f (x + h) = 2(x + h) - 1
= 2(x2 + 2xh + h2 ) -1
= 2x2 + 4xh + 2h2 -1
f (x + h)- f (x) = 2x2 + 4xh + 2h2 -1- (2x2 -1)
= 2x2 + 4xh + 2h2 -1- 2x2+ 1
= 4xh + 2h2
/(x) = lim f (x + h)- f (x)
           h→0       h
= lim =  4xh + 2h2
  h→0          h
= lim h(4x + 2h)
  h→0     h
= lim (4x + 2h)
  h→0
= 4x

2x2 + 4xh + 2h2 -1
4xh + 2h2
substitution
simplification
answer
(5)

7.2.1

 d  (5√x2 + x3)
dx 
 d  (x2/5 + x3)
dx 
 d  = 2/5 x3/5 + 3x2
dx

x2/5
2/5 x3/5 
3x2
(3)

7.2.2

f (x)=  4x2 - 9
           4x + 6
= (2x - 3)(2x + 3)
         2(2x + 3)
2x - 3
      2
= x - 3/2

f / (x) = 1

(2x - 3)(2x + 3)
2(2x + 3)
simplification to two separate terms
answer
(4)

   

[12]

 

QUESTION 8

8.1

-1 < x < 2

answer (2)

8.2

x = -1 + 2
          2  Answer Only:Full Marks
x = ½

method
answer
(2)

8.3

From the graph x >  ½  
Answer Only: Full Marks

answer
(2)

8.4

g (x) = ax3 + bx2 + cx
g / (x) = 3ax2 + 2bx + c = -6x2 + 6x +12
3a = – 6.    2b = 6   c = 12
a = –2         b = 3
g (x) = -2x3 + 3x2 +12x

g / (x) = 3ax2 + 2bx + c
a = –2
b = 3
g (x) = -2x3 + 3x2 +12x
(4)

8.5

/(½) = 6(½)2 + 6(½) + 12
m = 27/2  or 13,5
y = - 2(½)3 + 3(½)2 + 12(½)
y = 13/2 or  6,5
y - y1 = m(x - x1 )
y - 6,5 = 13,5(x - 0,5)
y = 13,5x - 0,25

max gradient at x =½
answer
y value
substitution
answer
(5)

   

[15]


QUESTION 9
 

9.1

Total surface area  = 2?w + 2wh + 2?h
but: ? = 3w
Total surface area = 6w2 + 2wh + 6wh
C = 15(6w2 )+ 6(2wh + 6wh)
= 15(6w2 )+ 6(8wh)
= 90w2 + 48wh

2?w + 2wh + 2?h
? = 3w
15(6w2 )
6(2wh + 6wh)
(4)

9.2

5 = 3w2h
h =  5  
     3w2
C = 90w2 + 48wh
C(w) = 90w2 + 48(  5  )
                             3w2
= 90w2 + 80w-1
C /(w) = 180w - 80w-2
180w - 80w-2 = 0
180w3 - 80 = 0
w3 = 80 
       180
w =3 80 
         180
w = 0,76

h =  5  
     3w2
substitution
C(w) = 90w2 + 80w-1
derivative
equating derivative to zero
value of w
(6)

   

[10]


QUESTION 10

10.1

1010 or 10 000 000 000

answer (2)

10.2.1

8 × 10 × 10     x    8 × 8 × 10    x   2 × 10 × 10 × 10
    Area                    exchange            number
No. of valid 10-digit numbers
= (8 × 10 × 10 )x (8 × 8 × 10 ) x (2 × 10 × 10 × 10)
= 1,024 × 109

8 × 10 × 10
or
8 × 8 × 10
2 × 10 × 10 × 10
1,024 × 109 (A) 
(3)

10.2.2

Probability = 1,024 x 109
                          1010
=  64  = 0,1024 = 10,24%
   625

1,024 x 109
    1010
answer (2)

   

[7]


QUESTION 11
  

11 19
11.1

P (Bull’s eye first shot and second shot)
= 0,5 × 0,5
= 0,25 or ¼

two 0,5’s
0,5 × 0,5

11.2

P (Bull’s eye at least twice in 3 shots)
= (0,5 × 0,5 × 0,5) + (0,5 × 0,5× 0,5) + (0,5 × 0,5× 0,5) + (0,5 × 0,5 × 0,5)
= 0,125 + 0,125 + 0,125 + 0,125
= 0,5 or ½

0,5 × 0,5× 0,5
four events
answer (A)

11.3

Person shoots first:
(0,5) + (0,5)3 + (0,5)5 + ...
P =  a  
      1- r
P =   0,5   
     1- 0,25
P = 2/3 = 0,67

(0,5) + (0,5)3
+ (0,5)5 + ...
P =   0,5   
     1- 0,25

   

[8]

TOTAL: 150

Last modified on Tuesday, 08 March 2022 08:57