PHYSICAL SCIENCES: PHYSICS (PAPER 1)
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
NOVEMBER 2020
QUESTION 1
1.1 B ✓✓(2)
1.2 D ✓✓ (2)
1.3 C✓✓ (2)
1.4 C ✓✓ (2)
1.5 C ✓✓ (2)
1.6 A ✓✓ (2)
1.7 A ✓✓ (2)
1.8 D ✓✓ (2)
1.9 A ✓✓ (2)
1.10 B ✓✓ (2)
[20]
QUESTION 2
2.1 Marking criteria
If any of the underlined key words/phrases in the correct context are omitted: - 1 mark per word/phrase.
The perpendicular force exerted by a surface on an object in contact with the surface. ✓✓ (2)
2.2
Accepted symbols
N - FN/Normal/Normal force/173,5N /Normaal
f - Ff /fk /frictional force/kinetic frictional force/5 N
w - Fg /mg/Weight/FEarth on block/Fw/Gravitational force/196 N
T - Tension/FT
Fapplied - F/Applied force/35 N/ FA
Notes
2.3 For the 20 kg:
Fnet = ma
T – f – FAx = ma
T – 5 – 35 cos40° = 0 ✓
T = 31,81 N
For m:
Fnet = ma
mg – T = ma
m(9,8) – 31,81 ✓ = 0
m = 3,25 kg ✓
Marking criteria
2.4.1 Decreases ✓ (1)
2.4.2 POSITIVE MARKING FROM QUESTION 2.3
Moving to the right
Velocity decreases
Accelerates/Net force to left✓✓
OR
As the tension force decreases, the net force/acceleration acts in the opposite direction of motion /to the left.✓✓
Moving to the left
Velocity increases ✓
Accelerates/Net force to left ✓✓(3)
[16]
QUESTION 3
3.1 (Motion of an object) under the influence of gravity (weight) only. (2 or 0)
OR
(Motion in which) the only force acting on the object is gravity (weight). (2)
3.2.1 Δt = 0,67 – 0,64 = 0,03 s (2)
3.2.2 OPTION 1
Δt =(1,90 - 0,67)
2
= 0,62 s (0,615 s)
OPTION 2
Δx = viΔt + ½ aΔt2
(-1,85) = 0 + ½ (-9,8)Δt2
Δt = 0,61 s (0,6145 s) (2)
OPTION 3
Δt =(1,90 + 0,67)
2
= 1,285 s
Δt = 1,285 – 0,67 ✓
= 0,62 s (0,615 s)
OPTION 4
vf2 = vi2 + 2aΔx
0 = vi2 + 2(-9,8)(1,85)
vi = 6,02 m·s-1
vf = vi + aΔt
0 = 6,02 + (-9,8)Δt ✓
Δt = 0,61 s✓
3.2.3 POSITIVE MARKING FROM QUESTION 3.2.2
Marking Criteria
OPTION 1
Upwards positive
vf = vi + aΔt ✓
0 = vi + (-9,8)(0,62) ✓
vi = 6,08 m·s-1 (6,076 m·s-1)
Downwards positive
Δy = viΔt + ½ aΔt2 ✓
1,85 = vi (0,62) + ½ (9,8) (0,62)2 ✓
vi = -6,02
vi = 6,02 m·s-1 (6,022 m·s-1) ✓
OPTION 2
Upwards positive
Δy = viΔt + ½ aΔt2✓
1,85 = vi (0,62) + ½ (-9,8) (0,62)2
vi = 6,02 m·s-1 (6,022 m·s-1 ) ✓
Downwards positive/Afwaarts positief
vf = vi + aΔt ✓
0 = vi + (9,8)(0,62) ✓
vi = -6,08
6,08 m·s-1 (6,076 m·s-1 )✓
OPTION 3
Motion from top to bottom
Downwards positive
vf2 = vi2 + 2aΔy
vf2 = 0 + 2(9,8)(1,85)✓
vf = 6,02 m·s-1 ✓
initial velocity =6,02 m·s-1
Upwards positive
vf2 = vi2 + 2aΔy
2 = 0 + 2(-9,8)(-1,85) ✓
vf = 6,02 m·s-1✓
initial velocity = 6,02 m·s-1
Motion from bottom to top
Downwards positive
vf2 = vi2 + 2aΔy
02 = vi2 + 2(9,8)(-1,85)✓
vi = 6,02 m·s-1✓
Upwards positive
vf2 = vi2 + 2aΔy
0 = vi2 + 2(-9,8)(1,85)✓
vi = 6,02 m·s-1 ✓
OPTION 4
Upwards positive
Δy = viΔt + ½ aΔt2 ✓
0 = vi(1,23) + ½ (-9,8)(1,23)2✓
vi = 6,03 m·s-1 ✓
Downwards positive
Δy = viΔt + ½ aΔt2 ✓
0 = vi(1,23) + ½ (9,8)(1,23)2 ✓
vi = - 6,03 m·s-1
speed = 6,03 m·s-1✓
OPTION 5
Δy = (vf + vi) Δt
2
1,85 = (0 + vi) (0,62)
2
vi = 5,97 m·s-1✓✓
OPTION 6
FnetΔt = mΔv
FnetΔt = m(vf – vi)
m(9,8)(0,62) = m(0 – vi) ✓
vi = 6,08 m·s-1 ✓
OPTION 7
(Ep + Ek)floor = (Ep + Ek)top✓
(mgh + ½ mv2)floor = (mgh + ½ mv2)top
0 + ½ v2 = (9,8)(1,85) + 0✓
v = 6,02 m·s-1✓(3)
3.2.4 OPTION 1, 2, 3, 4: Marking criteria
Calculate initial velocity:
Calculate Δt:
Calculate initial velocity:
OPTION 1
Downwards positive
vf2 = vi2 + 2aΔy
0 = vi2 + 2(9,8)(-1,2)✓
vi = - 4,85 m·s-1
Upwards positive
vf2 = vi2 + 2aΔy
0 = vi2 + 2(-9,8)(1,2)✓
vi = 4,85 m·s-1
OPTION 2
(Emech)top = (Emech)bot
(Ep +Ek)top = (Ep +Ek)Bot
(mgh + ½mv2)top = (mgh + ½mv2)Bot
(9,8)(1,2) + 0 = 0 + (½)v2 ✓
vi = 4,85 m·s-1
OPTION 3
Wnc = ΔEp + ΔEk
0 = (0 – mgh) + ½m(v2f - v2i)
0 = -(9,8)(1,2) + ½vi2
vi = 4,85 m·s-1 upwards
OPTION 4
Wnet = ΔEk
wΔxcos180° = ½m(v2f - v2i)
(9,8)(1,2)cos180° = ½vi2✓
vi = - 4,85 m·s-1
OPTION 5
Downwards positive
Δy = viΔt + ½ aΔt2 ✓
1,2 ✓= 0 + ½(9,8) Δt2✓
Δt = 0,49 s
t = 1,97 + ✓ 2(0,49) ✓
= 2,96 s ✓
Upwards positive
Δy = viΔt + ½ aΔt2 ✓
-1,2 ✓= 0 + ½(-9,8)Δt2✓
Δt = 0,49 s
t = 1,97 + ✓ 2(0,49)✓
= 2,96
Calculate time Δt
Upwards positive
Δy = viΔt + ½ aΔt2✓
1,2 = (4,85)Δt + ½(-9,8)Δt2 ✓
Δt = 0,4898 s / 0,5 s
t = 1,97 + 2(0,4898)✓
= 2,95 s / 2,97 s✓
OR
Δy = viΔt + ½ aΔt2 ✓
0 = (4,85)Δt + ½(-9,8)Δt2 ✓
Δt = 0,9898 s (or Δt = 0)
t = 1,97 + 0,9898 ✓ = 2,96 s ✓
Downwards positive
Δy = viΔt + ½aΔt2✓
1,2 = (-4,85)Δt + ½(9,8)Δt2 ✓
Δt = 0,4898 s / 0,5 s
t = 1,97 + 2(0,4898)✓
= 2,95 s / 2,97 s ✓
OR
Δy = viΔt + ½aΔt2✓
0 = (4,85)Δt + ½(9,8)Δt2✓
Δt = 0,9898 s (or Δt = 0)
t = 1,97 + 0,9898✓ = 2,96 s✓
OR
vf = vi + aΔt ✓
-4,85 = 4,85 + (-9,8)Δt ✓
Δt = 0,9898 s
Δt = 1,97 + 0,9898 ✓= 2,96 s✓
OR
Upwards positive
vf = vi + aΔt✓
0 = 4,85 + (-9,8)Δt ✓
Δt = 0,4949 s
Δt = 1,97 + (2)(0,4949)✓
= 2,96 s✓✓
OR
Δy = (vi + vf) Δt
2
1,2 = (0 + 4.85) Δt✓Δt = 0,4948s
2
Δt total = 2(0,4948) = 0,99 s
Δt = 1,97 + 0,99✓= 2,96 s ✓
OPTION 5: Marking criteria
[15]
QUESTION 4
4.1 (Linear) momentum (of an object) is the product of mass and velocity.✓✓
(2 or 0) (2)
4.2.1 OPTION 1
East as positive
Σpi = Σpf
mpvpi + mQvQi = mpvpf + mQvQf
(0,16)(10) + (0,2)(-15) ✓= (0,16)(-5) +(0,2)vQf ✓
vQf = -3 m∙s-1
vQf = 3 m∙s-1 ✓ west ✓
OPTION 2
West as positive
Σpi = Σpf
mpvpi + mQvQi = mpvpf + mQvQf
(0,16)(-10) + (0,2)(15) ✓= (0,16)(5) +(0,2)QNf ✓
vQf = 3 m∙s-1 ✓ west ✓
OPTION 3
Δpp = -ΔpQ✓
(0,16)(-5 – 10) ✓= -(0,2)(v – (-15))✓
v = -3 m·s-1
= 3 m·s-1 ✓west ✓✓✓ (5)
Any one
4.2.2 For ball:
West as negative
Impulse = Δp
FnetΔt = Δp
Δp = m(vPf – vPi)
= 0,16(-5 – 10)✓
= - 2,4
2,4 N∙s ✓ (2,4 kg∙m∙s-1)
OR
West as positive /Wes as positief
Impulse = Δp
FnetΔt = Δp
= m(vPf – vPi)
= 0,16(5 – (-10)) ✓
= 2,4 N·s
POSITIVE MARKING FROM QUESTION 4.2.1 (3)
For ball:
West as negative
Impulse = Δp
FnetΔt = Δp
= m(vQf – vQi)
= 0,2[-3 – (-15)]✓
= 2,4 N∙s ✓ (2,4 kg∙m∙s-1)
OR
West as positive
Impulse = Δp
FnetΔt = Δp
= m(vQf – vQi)
= 0,16(3 – (15)) ✓
= - 2,4 N·s
2,4 N∙s✓ (2,4 kg∙m∙s-1)
[10]
QUESTION 5
5.1 Marking criteria
If any of the underlined key words/phrases in the correct context are omitted:
1 mark per word/phrase. However, IF: The word “work” is omitted 0 marks
A force is non-conservative if the work it does on an object (which is moving between two points) depends on the path taken.✓✓
OR
A force is non-conservative if the work it does on an object depends on the path taken. ✓✓
OR
A force is non-conservative if the work it does in moving an object around a closed path is non-zero. ✓✓ (2)
5.2 K = ½ mv2 /Ek = ½ mv2
ΔK = Kf - Ki
K = ½mvf2 - ½mvi2
= ½m(vf2- vi2)
=½(200)(22 - 42)✓
K = - 1 200 J✓ (3)
Any one
5.3 POSITIVE MARKING FROM QUESTION 5.2.
Marking criteria
OPTION 1
Wnc = ✓K +✓U
Wnc = ½ mvf2 - ½ mvi2 + mghf - mghi
= ½ m (vf2- vi2) + mg(hf - hi)
-3,40 × 103 ✓= -1 200 + 200(9,8)(hf - 10) ✓
h = 8,88 m ✓ (8,87765 m)
OPTION 2
E(mech/meg)A + Wf = E(mech)B
(Ep +Ek)A + Wf = (Ep +Ek)B
(mgh + ½mv2) A + Wf = (mgh + ½mv2)B
200(9,8)(10) + ½(200)(42) - 3,40 × 103 = 200(9,8)(h) + ½(200)(2)2
h = 8,88 m ✓ (8,87755)
OPTION 3
Wnet = ✓K
Wf + Ww = ½mvf2 - ½mvi2
Wf – ΔEp = ½mvf2 - ½mvi2
Wf - mg(hf - hi) = ½m(vf2- vi2)
-3,40 × 103 - 200(9,8)(h-10) = -1 200
h = 8,88 m ✓ (8,87755 m) (4)
5.4 OPTION 1 AND 2: Marking criteria
OPTION 1
Wnc = ✓K + ✓U
Wengine + Wf = ½mvf2 - ½ mvi2 + mghf - mghi
= ½m(vf2- vi2) + mg(hf - hi)
Wengine+ (50)(15)(2)cos180° = 0 + 200(9,8)(22 – 8,88)
Wengine = 27 215,20 J
Pengine =Wengine
t
=27 215,20
15
= 1 814,35 W
Any one
OPTION 2
Wnet = K
WN + Wengine + Ww + Wf = 0
WN + Wengine - ΔEp + Wf = 0
0 + Wengine - (200)(9,8)✓(13,12) + (50)(2)(15)cos180° ✓✓= 0
Wengine= 27 215,20 J
OR
Wnet = ✓K✓✓
WN + Wengine + Ww|| + Wf = 0
WN + Wengine +mgsinθΔxcos180o + Wf = 0
0 + Wengine - (200)(9,8)(13,12)Δx(-1)+ (50)(2)(15)cos180° = 0
Δx
Wengine= 27 215,20 J
Pengine = Wengine
Δt
=25 215,20
15
= 1 814,35 W
OPTION 3: Marking criteria
OPTION 3
Fnet = ma
Fengine + Ffriction + Fg// = 0
Fengine + (-50) + (-200)(9,8)(0,4373) = 0
Fengine = 906,52 N (906,52 – 912,4)
Pave = Fvave
Pave = (908,52)(2)
= 1 813,04 W (1 824,8 W)
sin = h/Δt
=13.12
2(15)
= 0.4373
OR
W = FengineΔxcosθ
= (906,52)(30)cos0o
= 27 195,6 J (27 372 W)
P = W = 27195,6 = 1 813,04 W ✓✓(1 824,8 W)
Δt 15
(5)
[14]
QUESTION 6
6.1 Marking criteria
If any of the underlined key words/phrases in the correct context are omitted:
- 1 mark per word/phrase.
The change in frequency✓ (or pitch) (of the sound) detected by a listener because the source and the listener have different velocities relative to the medium of propagation.✓
OR
An (apparent) change in (observed/detected) frequency (pitch), as a result of the relative motion between a source and an observer (listener). (2)
6.2 Towards (1)
6.3 fL = v ± vLfs OR fL = v OR fL = v fs
v ± vS v - vs v + vs
3148 = 340 + 0 fs 2073 = 340 - 0 fs
340 - vs 340 + vs
3148(340 - vs) = 2073(340 + vs)
340 + 0 340 - 0
vs = 70 m·s-1✓ (69,95 - 70,16 m·s-1) (6)
6.4 POSITIVE MARKING FROM QUESTION 6.3
OPTION 1
Δt = Δx
v
Δt = 350
70
Δt =5 s ✓
OPTION 2
Δx = viΔt + ½ aΔt2
350 = 70Δt + 0 ✓
Δt = 5 s ✓
OPTION 3
Δx =(vi + vf) Δt
2
350 =(70 + 70) Δt
2
Δt = 5 s ✓ (2)
[11]
QUESTION 7
7.1
n = Q
e
= (-)4 x 10 -6
(-)1,6 x 10-19
= 2,5 x 1013 (3)
7.2 Electrostatic force on B due to A:
FAB = kQ1Q2
r2
= [9 x 109(4 x 10-6)(3 x 10-6)]
0.22
= 2,7 N (3)
Ignore negative signs
7.3 Marking criteria
If any of the underlined key words/phrases in the correct context are omitted:
- 1 mark per word/phrase.
Electric field is a region (in space) where (in which) an (electric) charge experiences a (electric) force. ✓✓ (2)
7.4 Marking criteria
OPTION 1
Electric field at M due to : -4 x10-6 C
EAM = k Q
r2
=9 x 109(4 x 10-6)
(0.3)2
= 4,0 x 105 N∙C-1 (to left )
Electric field at M due to : +3 x 10-6 C,
EBM = k Q
r2
9 x 109(3 x10-6)
(0,1)2
= 2,7 x106 N∙C-1 (to right)
Net electric field at M
Enet = EBM + EAM
= 4,0 x105 – 2,7 x 106 ✓
= 2,3 x106 N∙C-1 (right)
OR
Net electric field at M
Enet = EBM + EAM
= -4,0 x 105 + 2,7 x 106
= - 2,3 x 106 N∙C-1
= 2,3 x 106 N∙C-1 (right) (5)
OPTION 2
FAM = kQ1Q2 = (9 x 109)(4 x 10-6)Q = 4 x 105Q N
r2 (0,3)2
FBM = kQ1Q2 = (9 x 109)(4 x 10-6)Q = = 2,7 x 106Q N
r2 (0,1)2
Fnet = 2,7 x 106Q + (-4 x 105Q) = 2,3 x 106Q
E = F = 2,3 x 106Q = 2,3 x 106 N·C-1 (right)
q Q
7.5 Positive (1)
7.6 POSITIVE MARKING FROM 7.2
Marking criteria
(Fnet)2 = (FAD)2 + (FAB)2
(7,69)2 = (FAD)2 + (2,7)2 ✓
FAD = 7,2 N
FAD = kQ1Q2
r2
7,2 = (9 x109)(4 x10-6)Q
(0,15)2
QD = 4,5 x 10-6 C
OR
FAD = kQ1Q2
r2
= 9 x109(4 x10-6)Q
0,152
= 1,6 x 106Q
Fnet = √FAB2 + FAD2 OR Fnet2 = FAB2 + FAD2
7,69 =√2,72 + (1,6x106Q)2
Q = 4,50 x10-6 C
[17]
QUESTION 8
8.1 Marking criteria
If any of the underlined key words/phrases in the correct context are omitted:
- 1 mark per word/phrase.
(Maximum) energy provided (work done) by a battery per coulomb/unit charge passing through it. ✓✓
Work done by the battery to move a unit coulomb of charge across the circuit. (2)
8.2 Energy (per coulomb of charge) is converted to heat in the battery due to the internal resistance. ✓✓ (2)
8.3.1
I = V/R
I = 1.5/0.5
= 3 A (3)
8.3.2 OPTION 1
1 = 1 + 1
RP R1 R2
1 = 1 + 1
RP 25 15
Rp = 9,375 Ω
Rext = 9,375 + 4 = 13,38 Ω
(13,375Ω)
OPTION 2
RP = R1 + R2
R1 + R2
RP =(25)(15)
25 + 15
Rp = 9,375 Ω
Rext = 9,375 + 4 = 13,38 Ω
(13,375Ω) (4)
8.3.3 POSITIVE MARKING FROM QUESTIONS 8.3.1 AND 8.3.2. (3)
OPTION 1
Ɛ = I(R + r)
= 3(13,38 + 0,5)✓
= 41,64 V ✓ (Range: 41,625 – 41,64)
OPTION 2
Ɛ = Vext + Vint
= (3)(13,38) + 1,5 ✓
= 41,64 V (Range: 41,625 – 41,64)
8.4 Yes.
For the same voltage/potential difference, a larger current will flow through a smaller resistor (I = V/R)
OR
I αI/R , V = constant
I is inversely proportional to R and V is constant.
OR
V|| = IR
= (3)(9,38)
= 28,14 V
IR2 = V = 28,14 = 1,13 A✓
R 25
IR3 = V = 28,14 = 1,88 A✓
R 15
OR
V is the same
I15Ω = 25/40 I
I25Ω = 15/40 I (3)
8.5 Remains the same✓ (1)
[18]
QUESTION 9
9.1.1 (DC) motor(1)
9.1.2 POSITIVE MARKING FROM QUESTION 9.1.1
Electrical to mechanical /kinetic (energy) ✓✓ (2 or 0) (2)
9.1.3 Split ring/commutator (1)
9.1.4 Anticlockwise (2)
9.2.1 (The rms voltage/value of AC is) the AC voltage/potential difference which dissipates the same amount of energy/heat/power as an equivalent DC voltage/potential difference. ✓✓ (2 or 0)
ACCEPT
The rms voltage/value of AC is the DC potential difference which dissipates the same amount of energy/heat/power as AC.(2)
9.2.2 Marking criteria
OPTION 1
Pave = V2rms
R
200= 2202
R
R = 242 Ω
OPTION 2
Pave = Vrms Irms
200 = Irms (220)
Irms = 0,909 A(0,91)
R = Vrms or R = V
Irms I
200 = 220
0.909
R = 242 Ω (241,76 Ω)
OPTION 3
Pave = Vrms Irms
200 = Irms = 0,909 A (0,91)
Pave = Irms2R
200 = (0,909)2R ✓
R = 242 Ω
(241,52 Ω) (3)
9.2.3 Marking criteria for options 1,2 and 3
POSITIVE MARKING FROM QUESTION 9.2.2.
OPTION 1
Marking criteria
W = V2 Δt
R
=1502
242
= 55 785.12J
OPTION 2
Pave = V2rms
R
Pav = 92,975 W
P = W/Δt
92,975 = W
(10)(60)
W = 55 785,12 J ✓
(55785,12 – 55896 J)
OPTION 3
R = V/I
242 = 150
Irms
Irms = 0,620 A
Pave = Irms Vrms
= (0,62)(150)
= 92,97 W (93 W)
P = W
Δt
92,975 = W
(10)(60)
W = 55 785,12 J ✓
(55785,12 – 55896 J)
OPTION 4
R = V/I
242 = 150
Irms
Irms = 0,620 A
W = I2RΔt
= (0,62)2(242)(10)(60) ✓
= 55 814,88 J ✓
(55785,12 – 55896 J)
OR
W = VIΔt
= (150)(0,62)(600)
= 55 800 J
OPTION 5
Pave = V2rms = 1502 = 92.975W
R 242
Pave = Irms2R
92,975 = Irms2(242)
Irms = 0,6198 A
W = I2RΔt
= (0,6198)2(242)(10)(60)
= 55 778,88 J
[16]
QUESTION 10
10.1 Photoelectric effect(1)
10.2 Work function (of potassium) (1)
10.3 Potassium
It has the lowest work function / threshold frequency / highest threshold wavelength.(2)
10.4 Marking criteria/Nasienriglyne
If any of the underlined key words/phrases in the correct context are omitted:
- 1 mark per word/phrase.
The work function of a metal is the minimum energy that an electron (in the metal) needs✓ to be emitted/ejected from the metal / surface.(2)
10.5.1 Wo= hfo
= (6,63 x 10-34)(1,75 x 1015) = Wo + 0
= 1,160 x 10-18 J ✓
OR
E = Wo + Ek(max)
hf = Wo + Ek(max)
(6,63 x 10-34)(1,75 x 1015) = Wo + 0
Wo = 1,160 x 10-18 J (3)
10.5.2 POSITIVE MARKING FROM QUESTION 10.5.1.
E = Wo + Ek(max)
hf = hfo + ½mv2max
(6,63 x 10-34)f = 1,160 x 10-18 + ½(9,11 x 10-31) (5,60 x 105)2
f = 1,97 x 1015 Hz (4)
[13]
TOTAL: 150