PHYSICAL SCIENCES: CHEMISTRY (PAPER 2)
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
NOVEMBER 2020

QUESTION 1
1.1 C ✓✓(2)
1.2 D ✓✓ (2)
1.3 C ✓✓ (2)
1.4 B ✓✓ (2)
1.5 D ✓✓(2)
1.6 B ✓✓ (2)
1.7 B ✓✓ (2)
1.8 C ✓✓(2)
1.9 A✓✓ (2)
1.10 C ✓✓ (2)
[20]

QUESTION 2
2.1.1 Ketones✓(1)

2.1.2 Pentanal✓✓
ACCEPT
2,2-dimethylpropanal
2-methylbutanal
3-methylbutanal

Marking criteria

  • Correct functional group,i.e. –al 
  • Whole name correct (2)

2.2.1 5 – bromo-2,3 – dimethylhexane
Marking criteria:

  • Correct stem i.e. hexane
  • All substituents (bromo and dimethyl) correctly identified.
  • IUPAC name completely correct including numbering, sequence, hyphens and commas. (3)

2.2.2
11
Marking criteria

  • Whole structure correct 2/2
  • Only functional group correct: ½

IF
More than one functional group 0/(2)
IF
Molecular formula 0/2
Condensed structural formula ½

2.3.1 The C atom bonded to the hydroxyl group is bonded to only one other C-atom. ✓✓ (2 or 0)
OR
The hydroxyl group/-OH/ is bonded to a C atom which is bonded to two hydrogens atoms. (2 or 0)
OR
The hydroxyl group/functional group/-OH is bonded to:
a primary C atom / the first C atom (2 or 0)
OR
15(2)
2.3.2 Esterification/condensation ✓(1)

2.3.3 Butanoic acid ✓(1)
[12]

QUESTION 3
3.1 Marking criteria
If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark.
The temperature at which the vapour pressure equals atmospheric (external) pressure. ✓✓ (2)
3.2
12(1)
3.3

  • Increase in the number of C-atoms increases molecular mass/size/chain length/surface area. ✓
  • Strength of the intermolecular forces increases/More sites for London forces. ✓
  • More energy is needed to overcome/break intermolecular forces. ✓ (3)

3.4.1 C ✓ (1)

3.4.2 B ✓
Marking criteria

  • Compare strength of intermolecular forces of A, B and C. ✓✓
  • Compare boiling points/energy required to overcome intermolecular forces of alcohols/A and aldehydes/B. ✓
    OR
    Alcohols have the highest boiling point.
  • Compare boiling points/ energy required to overcome intermolecular force of aldehydes/B and alkanes/C .✓
    OR
    Alkanes have the lowest boiling point.

Aldehydes/B have (in addition to London forces) dipole-dipole forces which are stronger than London forces, but weaker than hydrogen bonds. ✓
Therefore aldehydes/B have lower boiling points/require less energy to overcome intermolecular forces than alcohols/A,✓but higher boiling points / require more energy to overcome intermolecular forces than alkanes/C. ✓
OR
Aldehydes/B have stronger intermolecular forces than alkanes, but weaker intermolecular forces than alcohols/A. ✓
Therefore aldehydes/B have higher boiling points/ more energy required to overcome intermolecular forces than alkanes/C, ✓ but lower boiling points/ less energy to overcome intermolecular forces than alcohols/A.✓ (4)

3.5 Butanal ✓✓
Marking criteria

  • Correct stem, i.e. but ✓
  • Whole name correct(2)

3.6 Pentan-1-ol ✓✓
OR
1-pentanol ✓✓(2)
[15]

QUESTION 4
4.1 Marking criteria

  • Addition reaction / reaction of alkene / reaction of C – C double bond /reaction of unsaturated hydrocarbon✓
  • (Addition of) hydrogen halide/HX/ hydrogen and halide. ✓
    The addition of a hydrogen halide/HX✓to an alkene. (2)

4.2 
13
Marking criteria

  • Whole structure correct 2/2
  • Only functional group correct: ½

(2)
4.3.1 Cracking ✓ (1)
4.3.2 C8H18 ✓ (1)
4.4 1,2–dibromo ✓ propane ✓
1,2-dibromopropaan (2)
4.5.1
14
Marking criteria for the alcohol

  • Whole structure correct 2/2
  • Only functional group correct: ½

Notes:

  • If 1-chloropropane used as reactant, 2 marks for the primary alcohol.
  • Condensed or semi-structural formula: Max. 4/5
  • Molecular formula:2/5
  • Any additional reactants or products: Max.4/5
  • If arrow in completely correct equation omitted: Max.4/5
  • The product NaCℓ/KCℓ/HCℓ must be marked in conjunction with reactant NaOH/KOH/H2O. (5)

4.5.2

  • (Mild) heat
  • Dilute strong base/NaOH/LiOH/KOH OR water/H2O ✓ (2)

[15]

QUESTION 5
5.1.1 (Reaction) rate(1)

5.1.2 Surface area/state of division /particle size (1)

5.2.1 (Decreasing gradient indicates) rate of reaction is decreasing. ✓(1)

5.2.2 (Gradient is zero, indicates) reaction rate is zero ✓(1)

5.3
ave rate =ΔV/Δt
= 500 (-0) = 8,33 (cm3∙s-1)
    60 (-0)
(3)

5.4 Equal to (1)

5.5 Greater than
Experiment C:

  • Surface area of CaCO3 powder is greater than that of CaCO3 granules./
    More particles are exposed /More particles with correct orientation ✓
  • More effective collisions per unit time/Higher frequency of effective collisions. ✓
  • Increase in reaction rate.✓

OR
Experiment A:

  • Surface area of CaCO3 granules is smaller/Fewer particles are exposed
    (than that of powdered CaCO3). Less particles with correct orientation ✓
  • Less effective collisions per unit time./Lower frequency of effective collisions. ✓
  • Decrease in reaction rate.✓ (4)

5.6 Marking criteria:

  • Divide volume by 25,7 in n  = V/VM
    If no substitution step shown, award mark for answer: 0,0195 mol
  • Ratio: n(CO2) = n(CaCO3).
  • Substitute 100 in n = n/or in ratio
  • Final answer: 1,95 g to 2 g. 

OPTION 1
n(CO2) = V/Vm0,5/25,7
= 0,0195 mol
n(CaCO3) = n(CO2) = 0,0195 mol ✓
m(CaCO3) = nM
= 0,0195(100)
= 1,95 g ✓

OPTION 2
25,7 dm3 .........1 mol
0,5 dm3 ..........0,0195 mol ✓
100 g ✓...........1 mol
x ....................0,0195 mol ✓
x = m(CaCO3) = 1,95 g ✓

OPTION 3
n(CO2) = V/Vm0,5/25,7
= 0,0195 mol
0,0195 mol CO2 ≡ 0,856 g CO2 ✓
m(CO2) produced : m(CaCO3)
44 g : 100 g 
0,856 : x
x = 1,95 g CaCO(4)
[16]

QUESTION 6
6.1 Products can be converted back to reactants. ✓
OR
Both forward and reverse reactions can take place.
OR
A reaction which can take place in both directions. (1)

6.2.1 Remains the same(1)

6.2.2 Increases (1)

6.3

  • (When pressure is increased) the reaction that leads to the smaller amount of gas / side with less molecules/number of moles is favoured.✓
  • The reverse reaction is favoured. (2)

6.4 Endothermic

  • Kc decreases with decrease in temperature. ✓
  • Reverse reaction is favoured. / Concentration of reactants increases. / Concentration of products decreases./Yield decreases✓
  • Decrease in temperature favours an exothermic reaction. ✓
    OR
  • Kc increases with increase in temperature. ✓
  • Forward reaction is favoured. / Concentration of reactants decreases. / Concentration of products increases./Yield increases ✓
  • Increase in temperature favours an endothermic reaction.✓ (4)

6.5 CALCULATIONS USING NUMBER OF MOLES
Mark allocation

  • Correct Kc expression (formulae in square brackets).✓
  • Substitution of equilibrium concentrations into Kc expression. ✓
  • Substitution of Kc value. ✓
  • Multiply equilibrium concentrations of I2 and I by 12,3 dm3. ✓ (OPTION 1)
  • Multiply equilibrium concentrations of I by 12,3 dm3 and divide equilibrium mol of I2 by 12,3 dm3. ✓(OPTION 2)
  • Change in n(I) = n(I at equilibrium). ✓
  • USING ratio: I2 : I = 1 : 2 ✓
  • Initial n(I2) = equilibrium n(I2) + change in n(I2).✓
  • Substitute 254 g·mol-1 as molar mass for I2.✓
  • Final answer: (26 g - 27,94 g). ✓

OPTION 1
Kc =  [I] 2
         [I2]
3,76x10-3 =(4,79 x 10-3)2
                           [I2]
[I2] = 6,102 x 10-3 mol∙dm-3

  I2  I
Initial mass (g) (0,1045)(254)✓
= 26,543 g ✓
 
Initial quantity (mol) 0,1045 
Change (mol)  0,0295  0,0589
Quantity at equilibrium (mol) 0,0751  0,0589 
Equilibrium concentration (mol∙dm-3) 6,102 x 10-3  4,79 x 10-3


OPTION 2

  I2  I
Initial mass (g) x 0
Change in amount (moles) 0,0295 0,0589
Equilibrium amount (moles) x - 0,0295 0,0589
Equilibrium concentration (mol∙dm-3) x - 0,0295
    12.3
4,79 x 10-3 
(x 12.3 and divide by 12.3)

Kc =  [I] 2
         [I2]
3,76x10-3 =(4,79 x 10-3)2
                    x - 0.0295
                        12.3
x = 0,1045 mol
m = nM
= (0,1045)(254)
= 26,543 g ✓
Wrong Kc expression 6/9
No Kc expression, correct substitution 8/9

CALCULATIONS USING CONCENTRATION
Mark allocation

  • Correct Kc expression (formulae in square brackets). ✓
  • Substitution of equilibrium concentrations into Kc expression. ✓
  • Substitution of Kc value ✓
  • Change in n(I) = n(I at equilibrium). ✓
  • USING ratio: I2 : I = 1 : 2 ✓
  • Initial [I2] = equilibrium [I2] + change in [I2]. ✓
  • Divide by 12,3 dm3. ✓
  • Substitute 254 g·mol-1 as molar mass for I2.✓
  • Final answer 26,543 g. ✓

OPTION 3
Kc =  [I] 2
         [I2]
3,76x10-3 =(4,79 x 10-3)2
                           [I2]
[I2] = 6,102 x 10-3 mol∙dm-3

  I2  I
Initial mass (g) 8,497x10-3 0
Change in amount (moles) 2,395x10-3 4,79x10-3
Equilibrium concentration (mol∙dm-3) 6,102 x 10-3 4,79 x 10-3

c =  m  
      MV
8.497 x 10-3 =       m        
                      (254)(12.3)
m = 26.546g
(9)
[18]

QUESTION 7
7.1.1 Weak
Ionises/Dissociates incompletely/partially (in water) (2)
7.1.2 OPTION 1
pH = -log[H3O+] 
3,85  = -log[H3O+]
[H3O+] = 1,41 x 10-4 mol∙dm-3 

OPTION 2
[H3O+] = 10-pH 
= 10-3,85 
= 1,41 x 10-4 mol∙dm-3 (3)

7.1.3 Greater than (1)

7.1.4 CH3COO-(aq) + H2O(ℓ) ⇌ CH3COOH(aq) + OH-(aq) 
OR
CH3COONa(aq) + H2O(ℓ) ⇌ CH3COOH(aq) + NaOH(aq) 
Due to formation of hydroxide/OH- / the solution is basic/alkaline /pH > 7. (3)

7.2.1 Marking criteria
Substitute/vervang: 1 x 0,0145 OR 1 x 14,5 in c = / ca x Va  = na  
                                                                               V    cb x Vb     nb

  • Use: n(CH3COOH) : n(NaOH) = 1:1 
  • Final answer/Finale antwoord: 0,0145 mol 

OPTION 1
n(NaOH)reacted = cV
= 1(0,0145) 
= 0,0145 mol
n(CH3COOH)diluted = n(NaOH) 
= 0,0145mol (3)

7.2.2 POSITIVE MARKING FROM 7.2.1.
Marking criteria

  • Calculate mass CH3COOH in 25 cm3 (1,13 g). ✓
  • Formula: n = m/M
  • Substitute: M = 60 g∙mol-1
  • n(CH3COOH)reacted = ninitial- nunreacted 
  • USE mol ratio: n(CaCO3) : n(CH3COOH) = 1 : 2.✓
  • Substitution of 100 g∙mol-1 in m = nM. ✓
  • Calculate percentage: 0,217 x 100
                                          1,2
  • Final answer: 18,08% (17,92 – 22,92)

m(CH3COOH) = 4,52 x 25 = 1,13 g
                           100
n(CH3COOH)ini. = m/M
=1,13= 0,01883 mol
   60
n(CH3COOH)rea = 0,01883 – 0,0145 = 0,0043 mol
n(CaCO3) = ½n(CH3COOH)
= 0,5(0,0043) 
= 0,00217 mol
m(CaCO3) = nM
= 0,00217(100) = 0,217 g
% CaCO3= 0,217 x 100
                    1,2
= 18,08 %  (8)
[20]

QUESTION 8
8.1 Provides path for movement of ions./Ensures(electrical)neutrality in the cell. (1)

8.2 (The electrode) where oxidation takes place/electrons are lost.(2)

8.3 Mg/Magnesium (1)

8.4.1 2H++ 2e- → H2 
Marking criteria
H2 ← 2H+ + 2e- (2/2)   2H+ + 2e- ⇌ H2 (½)
H2 ⇌ 2H+ + 2e- (0/2)    2H+ + 2e ← H2 (0/2)

  • Ignore if charge omitted on electron.
  • If charge (+) omitted on H+:
    Example: 2H+ 2e- → H2 Max.:½ (2)

8.4.2 Magnesium/Mg ✓ (1)

8.5 OPTION 1
Eθcell = Eθreduction - Eθoxidation
= 0 - (- 2,36)
Eθcell  = 2,36 V

Notes

  • Accept any other correct formula from the data sheet.
  • Any other formula using unconventional abbreviations, e.g.Eθcell= E°OA - E°RA followed by correct substitutions:

OPTION 2
2H++ 2e- → H2                                          Eθ = 0 V 
Mg(s) → Mg2+(aq) + 2e-                           Eθ = +2,36 V 
Mg(s) + 2H+(aq)→ Mg2+(aq) + H2(g)       Eθ = +2,36 V  (4)

8.6 H2 is a stronger reducing agent than Cu and therefore Cu2+/Cu ions are reduced/H2 is oxidised Electrons flow from H2 to Cu. (3)
[14 ]

QUESTION 9
9.1 ANY ONE:

  • The chemical process in which electrical energy is converted to chemical energy. ✓✓ (2 or 0)
  • The use of electrical energy to produce a chemical change. (2 or 0)
  • Decomposition of an ionic compound by means of electrical energy. (2 or 0)
  • The process during which and electric current passes through a solution/ionic liquid/molten ionic compound. (2 or 0) (2)

9.2 Battery/cell/ power source ✓(1)

9.3 Silver nitrate/AgNO3/ Silver ethanoate/CH3COOAg / Silver fluoride /AgF/ Silver perchlorate AgCℓO4. (1)

9.4 Remains the same
Rate of oxidation is equal to the rate of reduction. (2)

9.5 Ag → Ag+ + e- 
Notes
Ag+ + e- ← Ag (2/2)   Ag ⇌ Ag+ + e- (½)
Ag ← Ag+ + e- (0/2)   Ag+ + e- ⇌ Ag (0/2)

  • Ignore if charge omitted on electron.
  • If charge (+) omitted on Ag+:
    Example: Ag → Ag + e- ✓Max./Maks: (2)

[8]

QUESTION 10
10.1.1 (Liquid) Air (1)

10.1.2 Natural gas/methane/oil/coal/coke✓(1)

10.1.3 Iron/iron oxide/Fe/FeO (1)

10.1.4 NH3/Ammonia/Ammoniak ✓ (1)

10.1.5 Ostwald (process)/Ostwald(proses) ✓(1)

10.1.6 NH3 + HNO→ NH4NO3 Bal 
Marking criteria

  • Reactants  Products  Balancing 
  • Ignore double arrows
  • Marking rule 6.3.10.

10.2.1 NPK ratio/Ratio of primary nutrients ✓ (1)
10.2.2 OPTION 1
4/9  x  X/100  x 20 = 2,315 kg
X = 26 (26,04)

OPTION 2
m(P) = 2,315 kg
Mass of 1 part P =2,315= 0,57575
                                4
Mass of N = (0,57575)(2) = 1,1575 kg
Mass of K = (0,57575)(3) = 1,73625 kg
Total mass of fertiliser:
1,1575 + 2,315 + 1,73625 = 5,20875 kg ✓
X =5,20875 x 100= 26,04 (3)
           20
[12]
TOTAL: 150

Last modified on Tuesday, 15 March 2022 08:47