TECHNICAL MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
NOVEMBER 2020
MARKING CODES | |
A | Accuracy |
AO | Answer only |
CA | Consistent accuracy |
M | Method |
R | Rounding |
NPR | No penalty for rounding |
NPU | No penalty for omitting unit |
S | Simplification |
F | Correct formula |
SF | Substitution in correct formula |
NOTE:
QUESTIONÂ 1Â
1.1.1(a) | (12 + 2 x )  OR (12 + x + x ) | 🗸 length  A (1) | ||||||||||||||||||||||||||||||||
1.1.1(b) | (3 + 2 x )   OR  (3 + x + x ) | 🗸breadth A (1) | ||||||||||||||||||||||||||||||||
1.1.2 | Area = length x breadth | 🗸🗸 SF | ||||||||||||||||||||||||||||||||
1.1.3 | 4x2 + 30x + 36 = 52 OR | 🗸equation CA | ||||||||||||||||||||||||||||||||
1.2.1 | 3/x = 7x - 5 | 🗸standard form A | ||||||||||||||||||||||||||||||||
1.2.2 | x ∈ {Real numbers} | 🗸 x ∈ Real Numbers A (1) | ||||||||||||||||||||||||||||||||
1.3 | y - x = 3 and 3x2 + xy - y2 = - 3 3(x - 2)(x +1) = 0   OR x = -(-1) ± √(-1)2 - 4(1)(-2) OR 3( y - 2)( y - 5) = 0  OR  y = -(-7) ±   (-7)2 - 4(1)(10) | 🗸 subject A OR | ||||||||||||||||||||||||||||||||
1.4.1 | XC =  1   | 🗸making f the subject A (1) | ||||||||||||||||||||||||||||||||
1.4.2 | f =  1    OR f =                  1          | 🗸substitution  CA OR | ||||||||||||||||||||||||||||||||
1.5.1 | 1100112 + 1111012 = 11100002 | 🗸correct sum A (1) | ||||||||||||||||||||||||||||||||
1.5.2 |
= 64 + 32 + 16 =Â 112 OR
51 + 61= 112 | 🗸M CA OR [24] |
Â
QUESTIONÂ 2
2.1.1 | 3 x 2 + 2x + 2 = 0 | 🗸 substitution A 🗸value of Δ  CA |
2.1.2 | non-real | 🗸description  CA |
2.2.1 | x2 - 2 p x = 3 p2 OR | 🗸standard form A (1) |
2.2.2 | Δ = (-2 p)2 - 4(1)(-3p2 ) Δ isa perfect square \ roots will be rational | 🗸subst. in discriminant  CA [7] |
Â
QUESTIONÂ 3
3.1.1 # | log 3 + log 27 = log 3 + log 33 = log 3+ 3log 3 = 4 log 3 OR = log (3 x 27) = log 34  OR log 92 OR  log981 = 4 log 3  OR  2 log 9 OR   log992 = 2 log99 | 🗸prime bases A OR 🗸S     CA |
3.1.2 # | 2n √32 + 2n √2   = 2n √2 x 16 + 2n √2 = 2n4 √2 + 2n √2 OR OR OR | 🗸simplified surds    A OR OR OR |
3.2 | logx32 + logx4 - logx16 = log5125 OR OR | 🗸log property    A OR OR |
3.3.1 | ZT = 4 + 5i - 4 - 4i | 🗸total impedance  A (1) |
3.3.2 # | zT = i | 🗸value of modulus CA |
3.4 | k = 6 + 4( i - 9)+ 2mi OR OR | 🗸product    A OR OR [22] |
Â
QUESTION 4
4.1.1 | radius= 4,5 units | 🗸length of radius    A (1) | |
4.1.2 # | CA from Q 4.1.1f: | ||
4.1.3 | x ∈ [ - 4,5;4,5]  OR- 4,5 ≤ x ≤ 4,5 | 🗸end points CA | |
4.2 | 🗸Horizontal asymptote A | ||
4.3.1(a) | T ( 0 ; 16) | 🗸coordinates of A (1) | |
4.3.1(b) | P ( -4 ; 0) | 🗸– 4    A 🗸 0   A (2) | |
4.3.2 | g(x) = a ( x - x1 )( x - x2 ) OR OR | 🗸substitution in intercept form    CA 🗸value of a CA 🗸substitution CA 🗸value of b CA OR 🗸substitution A 🗸substitution A 🗸value of a CA 🗸value of b OR/OF 🗸substitution A 🗸substitution A 🗸value of a CA 🗸value of b (4)  | |
4.3.3 | g(x) =- 2x2 - 4x + 16 OR | 🗸substitution OR | |
4.3.4 | h ( x ) = k x + 8 | 🗸value of A 🗸substitution A 🗸value of k A (3) | |
4.3.5 | y > 8 OR  y∈(8; ∞) | range A (1) | |
4.3.6 | subst. x =-1 OR OR | value of y at W  A OR OR [27] |
 Â
QUESTION 5
5.1.1 | 90% of R 250 000 = R 225 000 OR | Loan value A OR |
5.1.2 | Â OR | FÂ Â Â Â Â Â Â A OR |
5.2 | A = P (1 - i)n | FÂ Â Â Â Â A |
5.3.1 | Value of the investment at the end of the first 2 years | SFÂ Â Â A |
5.3.2Â # | Value of the investment after change in interest rate for 2 years ORÂ OR | CA from QÂ 5.3.1 OR OR [16] |
   Â
QUESTIONÂ 6
6.1 | f(x) = ½x  | definition   A | ||||
6.2.1 | dA = 2πr | derivative  A (1) | ||||
6.2.2 |  | exponent vorm S 2x - 3x½ No Penalty for incorrect notation used | ||||
6.3 | g(x) = ax2 - x sub( -1; -1) OR 2a ( -1) - 1 = 3 OR | subst  A OR OR [15] |
Â
QUESTION 7Â
7.1 | y = f (0) = -(0 - 1)2 (0 + 3) = -3 | y-intercept  A (1) |
7.2 | f ( x ) = -( x - 1)2 ( x + 3) OR | x = 1Â Â Â Â Â Â A |
7.3 | f ( x ) = - x3 - x2 + 5x - 3 | derivative  A If derivative is first degree then Max 2 marks (5)  |
7.4 |  | cubic shape  A Using calculator to generate table, maximum 3 marks |
7.5 | - 5/3 < x < 1 OR x ∈ (- 5/3 ; 1) | CA from Q7.4 both end points notation (2) [14] |
 Â
QUESTION 8
8.1.1 | D(10) = - 0,5(10)2  + 20(10) | distance    A | ||
8.1.2 | velocity = D/ (t ) = - t + 20 | derivative  A | ||
8.2.1(a) | TSA. = ( 4x )(3x ) + (5x )( y ) + (4x )( y ) +(3x)( y ) OR | area     A OR | ||
8.2.1(b) | V = ½ (3x)( 4x)(300 - x2 ) | SF     CA | ||
8.2.2 | V = 1800x - 6x3 | derivative CA [12] |
Â
QUESTIONÂ 9
Penalize for constant C in either Q 9.1.1 or Q 9.1.2Â | ||
9.1.1 | ∫2x dx |  2 x  + C |
9.1.2 |  | power vorm  A 7 lnx   A OR |
9.2 | Area above the x - axis Unshaded area = 125 - 34 OR | area notation using integrals   A area notation using Integrals [13] |
 |  | TOTAL:150 |
Â
ADDENDUM
FINAL MARKING GUIDELINES (ADDITIONAL NOTES)Â
ITEM | DESCRIPTION | |
1.1.2 | Factors must have a variable x and product should lead to a quadratic equation. | |
1.1.3 | If 4x2 + 30x -16 = 0 is used and leading to negative x-values with not valid conclusion, maximum 2 marks | |
1.2.1 | Linear equation, no marks | |
1.3 | If simplification leads to linear equation,maximum 3 marks | |
1.5.1 | If base 2 is omitted,no penalty | |
2.2.1 | Order of terms not necessary | |
2.2.2. |
| |
3.3.2 # |
| |
5.2 | If: | F SF n = 4 Number of skilled workers Maximum 4 marks |
 |
| |
7.3 | If derivative is first degree,maximum 2 marks | |
7.4 |
|