TECHNICAL MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
NOVEMBER 2020

MARKING CODES

A

Accuracy

AO

Answer only

CA

Consistent accuracy

M

Method

R

Rounding

NPR

No penalty for rounding

NPU

No penalty for omitting unit

S

Simplification

F

Correct formula

SF

Substitution in correct formula

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • Consistent accuracy to be applied as indicated on the marking
  • # Shows questions where a Tolerance Range will be applied  are Q3.1; Q3.3.2; Q4.1.2 &Q5.3.2

QUESTION 1 

1.1.1(a)

(12 + 2 x )  OR (12 + x + x )

🗸 length  A (1)

1.1.1(b)

(3 + 2 x )   OR  (3 + x + x )

🗸breadth A (1)

1.1.2

Area = length x breadth
= (12 + 2x )(3 + 2x )
= 36 + 24x + 6x + 4x2
= 4x2 + 30x + 36

🗸🗸 SF 
CA (2)

1.1.3

4x2 + 30x + 36 = 52
4x2 + 30x - 16 = 0 OR    2x2 + 15x - 8 = 0
2(2x -1)( x + 8) = 0

OR
x = ½  or  x ≠ -8 
Outsidelength = 12 m + 2(½)m = 13m

🗸equation CA
🗸factors/formula CA
🗸both x values CA
🗸length   CA
NPU 
(4)

1.2.1

3/x = 7x - 5
7x2 - 5x - 3= 0
x = -b ±  b2 - 4ac = -(-5) ± √(-5)2 - 4(7)(-3)
               2a                        2(7)
x = 5 ± √109
          14
x ≈ 1,10  or x ≈ -0,39

🗸standard form A
🗸 SF    CA
🗸both values of x
NPR
(3)

1.2.2

x ∈ {Real numbers}
OR x ∈ (-∞; ∞)  OR x ∈

🗸 x ∈ Real Numbers A (1)

1.3

y - x = 3 and 3x2 + xy - y2 = - 3
y = x + 3
3x2 + x (x + 3) - (x + 3)2 = -3
3x2 + x2 + 3x -(x2 + 6x + 9) + 3 = 0
3x2 - 3x - 6 = 0    OR   x2 - x - 2 = 0

3(x - 2)(x +1) = 0    OR x = -(-1) ± √(-1)2 - 4(1)(-2)
                                                        2(1)
x = 2 or  x = -1
y = 2 + 3=5  or y = -1+ 3= 2

OR
y - x =3    and  3x2 + xy - y2 = - 3
x = y - 3
3( y - 3)2 + y ( y - 3) - y2 = -3
3y2 -18y + 27 + y2 -3y - y2 + 3 = 0
3y2 - 21y + 30 = 0   OR    y2 - 7 y +10 = 0

3( y - 2)( y - 5) = 0  OR  y = -(-7) ±    (-7)2 - 4(1)(10)
                                                       2(1)
y = 2 or  y = 5
x = 2 - 3=-1 or x = 5 - 3= 2

🗸 subject A
🗸substitution CA
🗸 S     CA 
🗸 factors or formula CA
🗸 both x-values CA
🗸 both y-values CA

OR
🗸subject   A
🗸substitution CA
🗸S     CA
🗸factors or formula CA
🗸both y-values   CA
🗸both x-values  CA
(6)

1.4.1

XC =    1    
        2πfC
f =    1      
    2πXCC   OR   f = (2πXCC)-1

🗸making f the subject A (1)

1.4.2

f =    1      
    2πXCC
=                 1                       OR    (2π x 63, 66 x 50 x 10-6)-1
  2π x 63, 66 x 50 x 10-6
≈ 50 hertz

OR
XC =    1    
        2πfC
63, 66 =          1             
               2πf x 50 x 10-6

f =                   1                  
     2π x 63, 66 x 50 x 10-6
≈ 50 hertz

🗸substitution  CA
🗸value of f   CA

OR
🗸substitution CA
🗸value of CA
NPR     NPU
(2)

1.5.1

1100112 + 1111012 = 11100002
OR
32 + 16 + 2 +1 + 32+16+ 8 +1 = 112 = 11100002

🗸correct sum A (1)
1.5.2
26 25 24 23 22 21 20
1 1 1 0 0 0 0

= 64 + 32 + 16 =  112

OR

25 24 23 22 21 20
1 1 0 0 1 1
1 1 1 1 0 1

51 + 61= 112

🗸M CA
🗸decimal       CA

OR
🗸M      CA
🗸decimal  CA
AO: Full marks 
(2)

[24]

 

QUESTION 2

2.1.1

3 x 2 + 2x + 2 = 0
Δ = b2 - 4ac
= (2)2 - 4 x 3 x 2
= - 20

🗸 substitution A

🗸value of Δ  CA
AO: Full marks  (2)

2.1.2

non-real

🗸description   CA
Accept imaginary (1)

2.2.1

x2 - 2 p x = 3 p2
x2 - 2 p x - 3p2 = 0

OR
-x2 + 2 p x + 3p2 = 0

🗸standard form A (1)

2.2.2

Δ = (-2 p)2 - 4(1)(-3p2 )
Δ = 4 p2 +12 p2
= 16 p2

Δ isa perfect square \ roots will be rational

🗸subst. in discriminant  CA
🗸 S         CA
🗸perfect square  CA (3)

[7]

 

QUESTION 3

3.1.1 #

log 3 + log 27
log 81 - log 9

= log 3 + log 33
   log 34 -log 32

=  log 3+ 3log 3 
  4 log 3 - 2 log 3

= 4 log 3 
   2 log 3
= 2

OR
log 3 + log 27
log 81 - log 9

= log (3 x 27)
     log(81/9)
= log 81
    log 9

= log 34    OR log 92 OR  log981
   log 32            log 9

= 4 log 3  OR  2 log 9 OR   log992 = 2 log99
   2 log 3           log 9
= 2

🗸prime bases  A
🗸log property CA
🗸S      CA
🗸S       CA 

OR
🗸log property A
🗸 prime bases or log prop     CA
🗸S         CA

🗸S         CA
AO: 1 mark (4)

3.1.2 #

2n √32 + 2n √2    = 2n √2 x 16 + 2n √2
    2n √50                    2n√2 x 25

= 2n4 √2 + 2n √2
       2n× 5√2
= 2n √2 (4 + 1)
     2n× 5√2
= 1

OR
2n√32 + 2n √2 = 2n √32  +  2n√2  
  2n√50              2n√50      2n√ 50
= 4√2 + √2 
   5√2   5√2
= 4  + 1 
   5     5
= 1

OR
2n√32 + 2n√2  = 2n (25)½ + 2n2½
     2n√50              2n (52 × 2)½
= 2n 2½  + 2n 2½
       2n5 × 2½
= 2n 2½ ( 22 + 1)
      2n5 × √2½
= 1

OR
2n√32 + 2n√2  = 2n (√32 +√2)
     2n√50                2n(50)
= 4√2 +√2
       5√2
= 5√2
   5√2
= 1

🗸simplified surds      A
🗸S       CA
🗸common factor or like terms CA
🗸 S        CA

OR
🗸 Separating terms      A
🗸S         CA
🗸 S        CA
🗸 S       CA 

OR
🗸exponent form     A
🗸S       CA
🗸common factor    CA
🗸 S              CA

OR
🗸Common factor     A
🗸S        CA
🗸common factor      CA
🗸 S        CA 
AO: 1 mark (4)

3.2

logx32 + logx4 - logx16 = log5125
logx32 x 4 = log553 
         16
logx 8= 3
x3 = 8 = 23
x = 2

OR
logx32 + logx4 - logx16 = log5125
5logx2  + 2logx2 - 4logx2 = 3log55
3logx2 = 3
logx2 = 1
x = 2

OR
logx32 + logx4 - logx 16 =log5125
logx32 x 4 = log553
          16
logx 8= 3
x3 = 23  OR   logx23 =logxx3
x = 2

🗸log property      A
🗸power form A
🗸S     CA
🗸exp form CA
🗸value of x  CA

OR
log property  A
🗸log identity    A
🗸S     A
🗸S    CA
🗸 value of x    CA

OR
🗸log property     A
🗸power form A
🗸S        CA
🗸exp form  CA
🗸 value of x CA (5)

3.3.1

ZT = 4 + 5i - 4 - 4i
= i

🗸total impedance  A (1)

3.3.2 #

zT = i
r = 1
tanθ =1/0
θ = 90°   OR θ = ½π
zT = 1(cos 90°+i sin 90°)  OR   zT = 1 (cos½π + isin½π)

🗸value of modulus CA
🗸tan ratio     CA
🗸correct angle  CA
🗸z in polar vorm    CA
AO: 1 mark

3.4

k = 6 + 4( i - 9)+ 2mi
k - 2mi = 6 + 4i -36
k - 2mi = - 30 + 4i
k = - 30     and - 2m = 4
k = - 30 and  m = - 2

OR
k = 6 + 4( i - 9)+ 2mi
k - 6 = 4i -36 + 2mi
k = - 30 + (2m + 4)i
k = - 30   and - 2m = 4
k = - 30 and  m = - 2

OR
k - 6 - 2mi =- 36 + 4i
k - 6 = - 36 and  - 2mi = 4i
k = - 30 and   m = - 2

🗸product      A
🗸S        CA
🗸value of k       CA
🗸value of m     CA

OR
🗸product     A
🗸S          CA
🗸value of k    CA
🗸value of m    CA

OR
🗸product  A
🗸S          CA 
🗸value of k CA
🗸value of  m CA
(4)

[22]

 

QUESTION 4

4.1.1

radius= 4,5 units

🗸length of radius       A (1)

4.1.2 #

7

CA from Q 4.1.1f:
🗸both intercepts    CA
🗸negative straight line  CA
🗸x-intercepts  CA
🗸y-intercept  CA
🗸semi-circle CA (5)

4.1.3

x ∈ [ - 4,5;4,5]  OR- 4,5 ≤ x ≤ 4,5

🗸end points CA
🗸correct notation   A (2)

4.2

8

🗸Horizontal asymptote  A
🗸x-intercept   A
🗸shape (both sections) A (3)

4.3.1(a) T ( 0 ; 16) 🗸coordinates of A (1)
4.3.1(b) P ( -4 ; 0) 🗸– 4      A
🗸 0     A (2)
4.3.2

g(x) = a ( x - x1 )( x - x2 )
g(x) = a ( x + 4)( x - 2)
16 = a ( 0 + 4)( 0 - 2)
a = - 2
g(x) =- 2 ( x + 4 ) ( x - 2 ) OR - b/2a = -1
g(x) =- 2x2 - 4x + 16         - b   = -1
                                        2(-2)           
g / (x) = 2ax + b = 0
OR   2(-2)(-1) + b = 0
b = - 4

OR
subst. U (2 ; 0):
0= a(2)2 + b(2) + 16
4a + 2b = - 16......... (1)
subst./ verv. S ( 1 ; 10):
10 = a(1)2 + b(1) + 16
a + b = - 6  ⇒ 2a + 2b =-12.......... (2)
(1) -(2) : 2a = - 4
a =- 2
2(- 2) + 2b = -12
b = - 4

OR
y = a(x + p)2 + q y = a(x +1)2 + q
Subst./verv. (2;0) : 0 = a (2 +1)2 + q
0 = 9 a + q............. (1)
Subst./verv. (1;10) : 10 = a (1+1)2 + q
10 = 4 a + q........... (2)
(1) - (2)          -10 = 5 a
a = - 2
10 = 4 a + q
10 = 4 (-2) + q
q = 18
y = -2(x +1)2 +18
= - 2x2 - 4x -16
b = - 4

🗸substitution in intercept form      CA

🗸value of a CA

🗸substitution CA

🗸value of b CA

OR

🗸substitution A

🗸substitution A 

🗸value of a CA

🗸value of b

OR/OF

🗸substitution A

🗸substitution A

🗸value of a CA

🗸value of b 

(4)

 

4.3.3

g(x) =- 2x2 - 4x + 16
subst. x =-1
g(-1) =- 2(-1)2 - 4(-1) + 16
y = 18

OR 
( R(-1; 18)

🗸substitution
CA ( Q4.3.2)
🗸 y-coordinate of R CA

OR
🗸🗸 y-coordinate of  R  CA (2)

4.3.4

h ( x ) = k x + 8
10 = k 1 + 8
k = 2
h ( x ) = 2x + 8

🗸value of A
🗸substitution A
🗸value of k A (3)
4.3.5 y > 8 OR   y∈(8; ∞) range A (1)
4.3.6

subst. x =-1
At W : y = 2-1 + 8 = 17/2 = 8,5
VW = 17/2- 8   OR   VW = 8,5 - 8
= 0,5 units

OR
At W : y = 2-1 + 8 =17/2 = 8, 5
VW = √(1-1)2  + (8,5 - 8)2
=√0, 25
= 0,5 units

OR
h(x) = 2x+ 8 eq. of the asympt y = 8
VW= 2x+ 8 - 8 = 2x
x = -1
VW = 2-1 = 0, 5 units

value of y at W  A
M           CA
length of VW CA

OR
value of at W       A
M    CA
length of VW CA

OR
value of y at W   A
M         CA
length of VW CA
AO: Full marks (3)

[27]

  

QUESTION 5

Related Items

5.1.1

90% of R 250 000 = R 225 000

OR
10 % of  R 250 000 = R 25 000
Loan value:
R 250 000 -R25 000 = R 225 000

Loan value  A

OR
Loan value   A (1)

5.1.2

 15

OR
A = P( 1 + i )n
Let P = R100
A = 100 (1 + 6,3%)12 
                      12
= R106, 49
int erest = R106, 49 - R100
= 6, 49
i ≈ 6, 49 ≈ 6, 5

F             A
SF          A
value of ieff greater than 6,3%    CA

OR
F        A
SF          A
value of ieff greater than 6,3% CA
AO: Full marks NPR (3)

5.2

A = P (1 - i)n
60 =P(1 - 5, 43%)4
      60      = P
(1 - 5, 43%)4   
P ≈75,01
There were 75 unskilled workers during April 2019
Incorrect formula: one mark for value of n

F         A
n = 4     A
SF       A
Number of unskilled Workers  CA
Accept 76

5.3.1

Value of the investment at the end of the first 2 years
A = P (1+ i)n
=R 85000(1 + 5,4 % )2x2
                         2
≈ R 94558,53

SF     A
R 94558,53     CA
PR
Incorrect formula: no marks (2)

5.3.2 #

Value of the investment after change in interest rate for 2 years
A = R94558,53(1 +  6% )2x12
                                12
≈ R106582,57
Value of the investment after withdrawing:
P=R106582,57 -R20 000 =R86582,57
YES it will be more.

OR 
A =  R94 558,53(1 + 6 % )4x12  - 20 000(1 + 6 %)2x12
                                 12                                  12
≈R 97592,39
YES, it will be more. 

OR
A =[R94 558,53(1 + 6 %)2x12 - 20 000 (1 + 6 %)2x12
                                 12                                12
≈ R 97592,39
YES, it will be more.

CA from Q 5.3.1
SF         CA
R106582, 57        CA
M subtracting 20000   A
difference      CA
conclusion CA

OR
M        A
SF                                 CA
value of Afinal CA
conclusion   CA

OR
M     A
SF       CA
value of i and n     A
value of Afinal  CA
conclusion CA
NPR                                 (6)

[16]

    

QUESTION 6

6.1

f(x) = ½x
 9

definition     A
SF            A
S            CA
Penalty of 1 mark if incorrect notation used(4)

6.2.1

dA = 2πr
dr

derivative  A (1)

6.2.2

 10

exponent vorm
S
2x
- 3x½ 
No Penalty for incorrect notation used
6.3

g(x) = ax2 - x sub( -1; -1)
-1 = a(-1)2 - (-1)
-1 = a +1
a = -2 

OR
3x - y + 2 = 0
y = 3x + 2
mtan = 3
g ( x ) = ax2 - x
g / ( x ) = 2ax - 1

2a ( -1) - 1 = 3
- 2a = 3 + 1
a = - 2 

OR
ax2 - x = 3x + 2
ax2 - 4x - 2 = 0
b2 - 4ac = 0(equal roots) tangent touches)
(-4)2 - 4(a)(-2) = 0
16 + 8a = 0
a = -2

subst  A
S            CA 
value of A      CA

OR
gradient of tan.      A
derivative A
g / ( x ) = 3         CA
substitution  CA
value of a  CA 

OR
equating A
std form     A
equal roots     CA
S   CA
value of a CA  (5)

[15]

 

QUESTION 7 

7.1

y = f (0) = -(0 - 1)2 (0 + 3) = -3
OR
(0 ;  –3)

y-intercept  A (1)

7.2

f ( x ) = -( x - 1)2 ( x + 3)
x = 1 or x =- 3

OR
(1 ; 0 )   or  (-3 ;0)

x = 1           A
x =- 3         A (2)

7.3

f ( x ) = - x3 - x2 + 5x - 3
f / ( x ) = -3x2 - 2x + 5
-3x2 -2x + 5 = 0
3x2 + 2x - 5 = 0
- (2) ±   (2)2 - 4(3)(-5)
(3 x + 5)( x - 1) = 0  
x = - 5/3 or  = 1
y = - 256 ≈ - 9,5 or y = 0 27
         27

derivative   A
f / ( x ) = 0     A
factors/formula CA
both values of  CA
both values of y  CA

If derivative is first degree then Max 2 marks (5)

 

7.4  11

cubic shape  A
y-intercepts  CA from Q7.1
both
x-intercepts
CA from Q 7.2
both turning points
CA from Q7.3 (4)

Using calculator to generate table, maximum 3 marks

7.5 - 5/3 < x < 1 OR x ∈ (- 5/3 ; 1) CA from Q7.4
both end points
notation
(2)
[14]

  

QUESTION 8

8.1.1

D(10) = - 0,5(10)2  + 20(10)
= 150 m

distance      A
NPU   (1)

8.1.2

velocity = D/ (t ) = - t + 20
D/ (12) = - (12) + 20
= 8 m/s

derivative   A
substitution in derivative CA
velocity   CA

8.2.1(a)

TSA. = ( 4x )(3x ) + (5x )( y ) + (4x )( y ) +(3x)( y )
= 12x 2 + 5xy + 4xy + 3xy 3600 = 12x 2 + 12xy
300 = x 2 + xy
xy = 300 - x 2
y = 300 - x 2
          x

OR
TSA = ( 3x + 4x + 5x ) y + 2( ½× 3x × 4x)
12 xy + 12 x2 = 3600
300 = x 2 + xy   OR      xy = 300 - x 2    
y =300 - x 2
         x

area         A
equat. area to 3 600 A
S               CA

OR
area  A
equat. area to 3 600      A
S             CA
(3)

8.2.1(b)

V = ½ (3x)( 4x)(300 - x2 )
                             x
= 6x (300 - x2)
= 1800x - 6x3

SF          CA
S     CA (2)

8.2.2

V = 1800x - 6x3
dV = 1800 - 18x2
dx
1800 - 18x 2 = 0  OR  18(100 - x 2) = 0
x 2 = 100
x = 10

derivative CA
equating derivative to 0 A
value of x  CA (3)

[12]

 

QUESTION 9

Penalize for constant C in either Q 9.1.1 or Q 9.1.2 

9.1.1

∫2x dx
=  2 x  + C
  ln 2

  2 x  + C
ln 2 (2)

9.1.2

 12

power vorm   A

7 lnx    A
-x-4

OR
- 1   .....     A
 x4   (4)

9.2 Area above the x - axis
13

Unshaded area = 125 - 34
                              6       3
= 19/2 square units
the unshaded area is LESS than the shaded area

OR
Unshaded area above the x - axis
14
The unshaded area is LESS than the shaded area

area notation using integrals    A
integration      A
subst.  A
S       CA

area notation using Integrals
integration   A
subst  CA
subst.     CA
S     CA
M unshaded area CA
conclusion CA
AO (conclusion): 1 mark
(7)

[13]

    TOTAL:150

 

ADDENDUM
FINAL MARKING GUIDELINES (ADDITIONAL NOTES) 

ITEM

DESCRIPTION

1.1.2

Factors must have a variable x and product should lead to a quadratic equation.

1.1.3

If 4x2 + 30x -16 = 0 is used and leading to negative x-values with not valid conclusion, maximum 2 marks

1.2.1

Linear equation, no marks

1.3

If simplification leads to linear equation,maximum 3 marks

1.5.1

If base 2 is omitted,no penalty

2.2.1

Order of terms not necessary

2.2.2.

  • If p is omitted,accept Δ = 16 ,maximum 2 marks
  • If Δ is irrational based on CA from Q2.2.1, maximum 3 marks

3.3.2 #

  • tanθ = 1/0 can be implied
  • If 1 is omitted, no penalty
  • Accept ZT = 1cis 90
5.2

If:
Year 1: 60 ¸ (1- 5, 3%) = 63, 45
Year 2: 63,45 ¸ (1- 5, 3%) = 67, 09
Year 3: 67,09 ¸ (1- 5, 3%) = 70, 94
Year 4: 70,94 ¸ (1- 5, 3%) = 75, 01
\75 workers

F
SF
n = 4
Number of skilled workers
Maximum 4 marks
 
  • Simple interest used , maximum 3 marks
  • Depreciation Compound used,maximum 4 marks
7.3 If derivative is first degree,maximum 2 marks
7.4
  • If point by point plotted and Turning Point not shown maximum 3 marks
  • If 2 Turning points are correctly plotted, award a mark
Last modified on Thursday, 10 March 2022 09:41