NOTE:

  • If a candidate answered a question TWICE, mark the FIRST attempt ONLY.
  • Consistent accuracy (CA) applies in ALL aspects of the marking guideline.
  • If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
  • The mark for substitution is awarded for substitution into the correct formula. 

QUESTION 1

 

1.1.1

2x(x +1) = 0
2x = 0 or x +1 = 0
x = 0 or   x = -1

x = 0
x = – 1      (2)

     

1.1.2

2x(x - 3) = 1  Penalise 1 mark for incorrect rounding off.
2x2 - 6x - 1 = 0 
1.1.2 aiuyda
∴ x = 3,16      or      x = -0,16

standard form 
substitution 
√√ 𝑥-values    (4)

     

1.1.3

x2 - 2x - 15 ≤ 0
(x + 3)( x - 5) ≤ 0
critical values
1.1.3 aiuhgudyad
OR
x ∈[-3 ; 5]  , x ∈ R

factors 
√√ -3 ≤ x ≤ 5 (accuracy)

OR

x ∈[-3 ; 5]  (3)

1.1.4

1.1.4 uihauyhda

3 + a - 2√a
a - 2√a + 1
answer 

(3)

     

1.2

x - 2 y = 3 .......................(1)
4x2 - 5xy = 3 - 6y ........................(2)
From (1) :  x = 2 y + 3 ................ (3)
(3) into (2) : 4(2y + 3)2 -  5y(2y + 3) = 3 - 6y
4(4y2 + 12y +  9)- 10y2 - 15y - 3 + 6y = 0
16y2 + 48y + 36 - 10y2 - 15y - 3 + 6y = 0
6y2 + 39y + 33 = 0
(6y + 33)(y + 1) =  0
y = -33 or  y =  -1
        6
y = -11
        2
x = - 8 or x = 1

x = 2y + 3
substitution
standard form 
factors 
𝑦-values 
x-values 

(6) 
     

1.3.1

For equal roots Δ = 0
b2 - 4ac = 0
(-p)2 - 4(3m)(5) = 0
p2 - 60m = 0
p2 = 60m
∴ m > 0 ⇒ 3m > 0
∴ minimum value

Δ = 0
substitution and simplification
p2 = 60 m
conclusion

(4)

     

1.3.2

Consider axis of symmetry
x = -b = -(+) = -ve
      2a  2(+)

method 
correct sketch 

(2)

   

[24]

QUESTION 2

 

2.1

23 ; 21 ; 19 ; . . . ; – 47
a = 23 and d = –2
Tn = a + (n - 1)d
-47 = 23 + (n - 1)(-2)
-47 = 25 - 2n
2n = 72
n = 36

substitution 
answer 

(2)

     

2.2.1

T2 - T1 = T3 - T2
(x + 5) - (3x -1) = (2x - 4) - (x + 5)
x + 5 - 3x + 1 = 2x - 4 - x - 5
-2x + 6 = x - 9
15 = 3x
∴x = 5

method 
substitution 
answer 

(3)

     

2.2.2

2.2.2 aihuyahd

first term and common difference
substituting Sn , a and d
standard form 
answer 

 

(4)
     

2.3.1

25 ; 48 ; 69 ; 88 ; x ; y
1st difference pattern :
23 ; 21 ; 19 ; 17 ; 15...
∴ x = 105 and y = 120

√ x = 105      
√ y = 120

(2)

2.3.2

2a = -2          3a + b = 23             a + b + c = 25
a = -1            3(-1) + b = 23         (-1) + (26) + c = 25
b = 26              c = 0
∴ Tn = -n2 + 26n

value of a 
value of b 
value of c 
answer 
(√√√√ can be awarded at formula)

(4)

2.3.3

n = -b
     2a
T13 = -(13)2 + 26(13)

= -(26)       = 169
   2(-1)
= 13

method 
n = 13
answer  (T13 = 169)

(3)

     

2.4

2.4 augydagd

expanding 

answer 
substitution 
answer 

(2)
   

[20]

QUESTION 3

 

3.1

Alevel1 =  1 × πR2
Alevel 2 =  2 × π(½R)2  = ½πR2
Alevel 3 =  4  × π(¼R)2  = ¼πR2
Alevel 4 =  8  × π(1/8R)2  = 1/8πR2 / 0,39R2

OR 

a = πR2 ; r = ½
T4 = (πR2)(½)31/8πR2 / 0,39R2

OR

Alevel 4 =  8  × π(1/8R)2 
= 1/8πR2 / 0,39R2

√√√ Areas for levels 1 to 3
answer
value of a
value of r 

substitution
answer 
If this option is given:
√ 8
1/8R
√√ answer

(4)

 

 

 

 


   

(4)

      
     

3.2

3.2 IYHYDAHD

formula 
substitution
answer 

(3)

   

[7]

QUESTION 4

 

4.1

-x2 - 4x + 5 = 0
x2 + 4x - 5 = 0
(x + 5)(x -1) = 0
x = -5 or  x = 1
M(0 ; 5)
E(-5 ; 0)
P(1 ; 0)

solving for x-intercepts
M(0 ; 5)
E(-5 ; 0)
P(1 ; 0)

(4)

     

4.2

x = (-5 + 1) = -2      or    x = -(-4) = -2
         2                                2(-1)
y = -(-2)2 - 4(-2) + 5 = 9
∴ N (-2;9)

 

x-value 
substitution 
y-value 

(3)

     

4.3

a = 1    and  q = 5

a = 1
q = 5

(2)

     

4.4

Length of ND = 9 (from 4.2)
y = x + 5
= -2 + 5
= 3
∴ length of TD = 3
NT = ND – TD
= 9 – 3
= 6

ND = 9

  

TD = 3

 

NT = 6

(3)
     

4.5

S( -4 ; 5)

m = f'(-4)
= -2(-4) - 4
= 4
y - 5 = 4(x - 4)
y = 4x + 21

coordinates of S 
m = f'(-4)
m = 4
substitution 
answer 

(5)
   

[17]

QUESTION 5

 

5.1

A(1 ; 0)

answer 

(1)

     

5.2

f (x) = k
          x
2 =  k
       3
k = 6

g(x) = log p x

2 = logp 9
p2 = 9 ⇒ p = 3

k = 6

p2 = 9
p = 3

(3)
     

5.3

y = log3x
g -1 : x = log3y
∴ y = 3x
Answer only: Full marks

interchanging x and y
answer 

(2)

     

5.4

Range of g -1
y > 0 ; y ∈ R

√√ answer 

(2)

     

5.5

6 = log3x + 1
x  
(3 ; 1) will be a point on g
g(x) + 1 will intersect f at (3 ; 2) 
∴ x = 3

(3 ; 1) point on g 
answer

(2)

   

[10]

QUESTION 6

 

6.1

g(x) = (x + 2)( y + 3) = k
( y + 3) =        k             
                   (x + 2)
y =      k          - 3
       (x + 2)
x = -2 (vertical asymptote)
y = -3 (horizontal asymptote)

standard form 
x = -2
y = -3

(3)

     

6.2

- 5 =    k    - 3
  2    0 + 2
1 = k
2    2

substitution 
answer 

(2)

     

6.3

y = -(x + 2) - 3
y = -x - 5

substitution 
answer 

(2)

   

[7]

   

QUESTION 7

 

7.1

7.1 auguyda

formula 

substitution 
answer

 

 


formula
substitution 
answer

(3)

 

 

 

 

(3) 

7.2 7.2 iuhaduihd

substitution 

use of logs 

solving for n 

answer 

(4)

7.3 7.3 iusuhiua
 

7.3 a ihauyhda

= R73762,18
Penalise 1 mark for incorrect notation in the question

7.3 b aiuhdiuah

subtraction
final answer

 

QUESTION 8

 

8.1

8.1 aihuiadhauid

Answer only = 0 marks

−7𝑥2 − 14𝑥ℎ − 7ℎ2
substitution
simplification
answer   (4)

     

8.2.1

8.2.1 auygduyad

√ x-4 + x½
√  4x-5   √ ½ x-½   (3)

     

8.2.2

8.2.2 aihdiuad

(x½ + 2)(x½ - 2)
simplification
answer         (3)

   

[10]

QUESTION 9

 

9.1

g(-5) = (-5)3 + (-5)2 -16(-5) + 20
= -125 + 25 + 80 + 20
= 0
∴ (x + 5) is a factor 

substitution 
answer

(2)

     

9.2

g(x) = x3 + x2 -16x + 20
= (x + 5)(x2 - 4x + 4)
= (x + 5)(x - 2)(x - 2)
∴ x = -5 or  x = 2 or  x = 2

(x2 - 4x + 4)
(x - 2)(x - 2)
x-intercepts 

(3)

     

9.3

g'(x) = 3x2 + 2x -16 = 0
(3x + 8)(x - 2) = 0
3x + 8 = 0 or x - 2 = 0
x = - 8 or  x = 2
        3
y = 50,81 or  y = 0

g'(x)
factors 
x-values 
y-values 

(4)

     

9.4

 9.4 aiuuhdiuha

intercepts with the axes
turning points 
shape

(3)

9.5

g''(x) = 6x + 2
g''(0) = 6(0) + 2
= 2 > 0
∴ concave up / konkaaf opwaarts

OR 

g''(x) = 6x + 2 = 0
x = - 1/3  (x-coordinate of  point of inflection)
but :0 > -1/⇒  concave up tothe right of - 1/3

g''(x)

substitution 

conclusion 

g''(x)

x = - 1/3

conclusion

(3)

     

9.6

9.6 aiygdad

OR

-8/3 ≤ x ≤ 0  or  x ≥ 2

9.6 a jhajhda

(3)

   

[18]

QUESTION 10

 

10.1

10.1 aiuhduia

multiplication
answer

(2)

     

10.2

10.2 aiuhuydha

method 
substitution and simplification
answer 
P'(x) = 0
answer 

(5)
   

[7]

QUESTION 11

 

11.1.1

P( A or B) = P( A) + P(B) - P( A and B)
= 0, 5 + 0, 4 - 0, 2
= 0, 7

P(B) = 0,4
substitution
answer 

(3)

     

11.1.2

P( A and/en B) = 0, 2
P( A) ×  P(B)
= 0, 5 × 0, 4
= 0, 2
∴ Agree  :  P( A and B) = P( A) × P(B)

P(A) x P(B) = 0,2
answer 
reason 
(Use of independent rule)

(3)
     

11.2.1

P(R or G) = 1 OR (100%)

answer 

(1)

     

11.2.2

 11.2 aiuhiuda

first branch with labels

second branch with labels

third branch with labels

outcomes 

(4)

     

11.2.3

11.2.3 aiuhdiuhad

method 
multiplying 
standard form 
factors 
answer 

(5)
   

[16]

     
   

TOTAL:

150

Last modified on Monday, 28 March 2022 09:06