MARKING CODES | |
A | Accuracy |
AO | Answer only |
CA | Consistent accuracy |
M | Method |
R | Rounding |
NPR | No penalty for rounding |
NPU | No penalty for units omitted |
S | Simplification |
F | Correct formula |
SF | Substitution in correct formula |
QUESTION 1 | ||||
1.1 | 1.1.1 | x2 - 8x - 33 = 0 (8)2 2(1) 4(1) 33 | ? Factors | (3) |
1.1.2 | x2 - 7x = 10 (-3x -1) | ?S A ? SF CA ?both values of x CA | (3) | |
1.1.3 | -2x2 + 9x+ 5 < 0 | ? Factors SF A | (4) |
1.2 | P = 2(l + w) OR x = 40, 78 or 4, 22 | ?length in terms of x A ?M (Pyth.) CA
OR
?length in terms of x A | (6) | |
1.3 | x = y+ 3 and y - x2 = -2x - 3 | ? Substitution A ?S CA ? Factors SF CA ? Both y-values CA ? Both x-values CA |
OR y = 0 or y = -3 | OR | (5) | |||
? equating Y | A | ||||
? S | CA | ||||
? Factors | CA | ||||
? x-values | CA | ||||
? y-values | CA | ||||
1.4 | 1.4.1 | K = 8 + 32 + 1 = 41 | ? value of K | A | (1) |
1.4.2 | 41 = 1 0 1 0 0 12 | ? 1 0 1 0 0 12 | CA | (1) | |
[23] |
QUESTION 2 | |||
2.1 | Δ = b2 - 4ac < 0 | ?Discriminant < 0 A | (2) |
2.2 | Δ = b2 - 4ac | ? SF A | (4) |
[6] |
QUESTION 3 | |||||
3.1 | 3.1.1 | ? Exponential form / Eksponensiële vorm ? S | A CA | (2) | |
3.1.2 | OR | ?Log property ?Exponential form ?S ?Log property
OR
?Log property ?S ?Log property ?Log property | A CA CA CA A CA CA CA | (4) | |
3.2 | -2 (log 25 - log 4) = 4 | ?Exponential form ?Log property ?Factors | A CA CA | (3) |
3.3 | 3.3.1 | ?M ?Exponential property ?Exponential property | A CA CA | (3) | |||
3.3.2 | log3 (x - 3) - log3 5 = 1 OR log3 (x - 3) - log3 5 = 1 | ?Log property ?Log property ?S OR ?Log property ?Log property ?S | A CA CA A CA CA | (3) | |||
3.4 | x - 3(5i + 2) = 4 - 3i + yi OR x - 3(5i + 2) = 4 - 3i + yi | ?S ?x-value ?y-value
OR ?S ?x-value ?y-value | A CA CA
A CA CA | (3) |
3.5 | V = 110, 4 + 46,1i | ?Substitution A | (5) |
[23] |
QUESTION 4 | |||||
4.1 | 4.1.1 |
| ? SF ?value of r ?value of a | (3) | |
4.1.2 | 0 ≤ y ≤ √10 | ? 0 and √10 CA from 4.1.2 | (2) | ||
4.1.3 | B(-√10;0) | ? Coordinates of B CA from 4.1.1 | (1) | ||
4.1.4 | y= 0 x= 0 | ? x= 0 A ? y= 0 A | (2) | ||
4.2 | 4.2.1 | k(x) = 2( x - 2)2 - 2 OR k(x) = 2( x - 2)2 - 2 | ?Substitution A ?y-int CA OR ?S A | (2) | |
4.2.2 | TP (2; -2) | ?x-coordinate ?y-coordinate | (2) |
4.2 | 4.2.3 | k(x) = 2 ( x - 2)2 - 2 | ?S A ?Equate to 0 CA ?Factors CA ?Both x-values CA | (4) | |
4.2.4 | x ∈ R | ? x ∈ R A | (1) | ||
4.2.5 | f: k: | (6) | |||
4.2.6 | y ≥ -2 | ? y ≥ -2 CA | (1) | ||
[24] |
QUESTION 5 | ||||
5.1 | A = P(1+ ni) | ?SF ?S | A CA | (2) |
5.2 | A = P(1+i )n | ?F ?SF ?S | A CA CA | (3) |
5.3 | ? SF A ?S CA ? Sum CA ? SF A ?S CA ?Difference CA ?SF CA ?S CA ? SF A ?S CA ? SF A ? S CA ?SF A ?S CA ?S CA ?S CA | (8) | ||
[13] |
QUESTION 6 | |||||
6.1 | ?F A ?SF CA ?S CA ?S CA ? f '(x) = -2 CA | (5) | |||
6.2 | 6.2.1 | ?3a A ?a- 4 CA | (2) | ||
6.2.2 | ?S A ? x/2 CA ? 3x3 CA
| (3) | |||
6.2.3 | S = ½ ft 2 | ? ft A ? πt CA | (2) |
6.3 | 6.3.3 | f (x) = 3x2 | ?6x A ?S CA ?Equating derivative and av. gradient CA ? x= 5 CA | (4) |
[16] |
QUESTION 7 | |||||
7.1 | g(x) = x3 - 12x - 16 | ?substitution by -2 A ?S CA | (2) | ||
7.2 | g(x) = x3 - 12x - 16 | ?Equating to 0 A | (4) | ||
7.3 | (0; -16) | ? y-intercept A | (1) | ||
7.4 | f(x) = x3 -12x -16 | ?Derivative A | (6) | ||
7.5 | ?Shape A ?y-intercept CA ?x-intercepts CA ?Both turning points CA | (4) | |||
7.6 | h(x) = (x - 2)3 - 12(x - 2) -16 | ?h(x) A | (1) | ||
7.7 | -2 > x or x < 2 | √ -2 > x CA ? x < 2 CA | (2) | ||
[20] |
QUESTION 8 | |||||
8.1 | 8.1.1 | q = 820 - p | ? q = 820 - p | A | (1) |
8.1.2 | Z= pq | ?Substitution CA | (2) | ||
8.1.3 | Z = 820 p - p2 | ?Derivative = 0 CA ?S CA | (2) | ||
8.2 | 8.2.1 | R ( x) = -50x2 + 3200x -1860 | ?Substitution A | (2) | |
8.2.2 | R (x) = -50x2 + 3200x -1860 = artisan's maximum earnings | ?Derivative = 0 CA ?S CA | (4) | ||
[11] |
QUESTION 9 | |||||
9.1 | 9.1.1 | ? 2x½ A | (4) | ||
9.1.2 | ?S A | (4) | |||
9.2 | ?A definite integral formula A | (6) | |||
[14] | |||||
TOTAL: | 150 |