MATHEMATICS
PAPER TWO (P2)
GRADE 12
EXAM PAPERS AND MEMOS
SEPTEMBER 2016
QUESTION 1 | |||||||||||||||
Day | 0 | 1 | 4 | 6 | 9 | 12 | 17 | 19 | |||||||
Weight | 124 | 121 | 103 | 90 | 71 | 50 | 27 | 16 | |||||||
1.1 | ✔ 2-4 correct points | (3) | |||||||||||||
1.2 | a = 124,84
| ✔ A | (3) | ||||||||||||
1.3 | (x; y) = (8;5;75,25) | ✔(8;5;75,25)and y-int 124,84 | (2) | ||||||||||||
1.4 | 124,84 - 5,83x = 80 | ✔ substitution | (2) | ||||||||||||
1.5 | r = −0,998 | ✔ answer | (1) | ||||||||||||
1.6 | Very strong negative correlation. | ✔ answer | (1) | ||||||||||||
[12] |
QUESTION 2 | ||||
2.1 | 21 learners | ✔ answer | (1) | |
2.2 | 3 pages | ✔ answer | (1) | |
2.3 | x = 28,19 | ✔✔ answer | (2) | |
2.4 | σ =13,12 | ✔ answer | (1) | |
2.5 | ( 28,19 − 13,12; 28,19 +13,12) ∴ 8/21 × 100 = 38.10% | ✔ interval | (3) | |
[8] |
QUESTION 3 | |||
3.1 | mPR= 5 - 1 | ✔ subst. P and R into correct formula
| (2) |
3.2 | mSQ = −2 SP⊥ PT | ✔mSQ = −2 | (3) |
3.3 | Equation of PR PR 1 y - 1 = ½(x + 4) OR y - 5 = ½(x + 4) | ✔ substituting m and P into equation of a str. line
✔ substituting m and R into equation of a straight line |
3.4 | -2 = x + 1 2 = y - 4 | ✔ substituting into correct formula | (3) |
3.5 | SQ = √(-5 - 1)2 + (8 + 4)2 OR ∴area of ∆ PQS = ST ×PT 15unit2 | ✔ subt. into correct form
✔SQ = 6√5 | (5) |
[18] |
QUESTION 4 | |||
4.1 | x2 + 8x + 16 + y2 + 9 = 20 (x + 4)2 + (y - 3)2 = 20 ∴ M(-4; 3) | ✔ completing square | (4) |
4.2 | (0 + 4)2 + (y - 3)2 = 20 (y - 3)2 = 4 y = 3 ± 2 ∴y = 1 Q(0;10 | ✔ subst. x = 0 into circle equation | (3) |
4.3 | mradius = 3 - 1 = 1 | ✔mradius = ½ | (4) |
4.4 | y = 6 | ✔ answer | (1) |
4.5 | 6 = 2x + 1 x = 5/2 U(5/2 ;6) | ✔ 6 = 2x + 1 | (2) | |
4.6 | MAU = 11 - 6 | ✔mAU = −2 | (6) | |
[20] |
QUESTION 5 | |||
5.1.1 | sin(-52º) = -sin 52º = √1 - t2 | ✔ − sin 52° | (3) |
5.1.2 | cos (2.19º) = cos38º | ✔cos(2.19°) = cos38° | (4) |
5.2 | 2cos(180º + x ).sin(180º - x ).sin 74º OR 2cos(180º + x ).sin(180º - x ).sin 74º | ✔ − cos x
✔ − cos x | (7) |
5.3.1 | 1 - cos 2x = 0 | ✔1− cos 2x = 0 | (4) |
5.3.2 | L.H.S/LK = 2sinx | ✔1− 2sin2 x | (3) |
[21] |
QUESTION 6 | |||||
6.1 | sin(x + 60º) = sin(90º - 2x) OR cos2x = cos(30º - x) | ✔co-ratio
✔co-ratio | (5) | ||
6.2 | g: ✔ x-intercept. f: ✔ x-intercept. | (6) | |||
6.3 | 240° | ✔ answer | (1) | ||
6.4 | h(x) = cos(2x −90°)−1= sin 2x −1 | ✔ substitution | (2) | ||
[14] |
QUESTION 7 | |||
7.1 | NP2 = ON2 + OP2 | ✔ using Pyth theorem correctly | (2) |
7.2 | PQ2 = (103)2 + (103)2 - 2(103)(103) .cos(120º ) | ✔ subst. into cosine rule | (2) |
7.3 | cos N = (177,86)2 + (177,86)2 - (178.40)2 | ✔ substitution | (2) |
[6] |
QUESTION 8 | |||||
8.1 | Bisects the chord | ✔ answer | (1) | ||
8.2 | |||||
8.2.1 | Q = 90° [∠in semi circle.] | ✔ S ✔ R | (4) | ||
8.2.2 | MF= 8ML | ✔ | (1) | ||
8.2.3 | OP2 = OL2 + LP2 | ✔ using Pyth correctly | (3) | ||
[9] |
QUESTION 9 | |||
9.1 | D3 = 30° [∠sopp equal sides] | ✔ S | (3) |
9.2 | A = 60º [∠at centre = 2∠at circumf.] | ✔ S | (2) |
9.3 | C =120° [opp. ∠sof cyclic quad.] | ✔ S | (2) |
9.4 | ADB = 70° Aˆ [tan chord theorem.] | ✔ S | (2) |
[9] |
QUESTION 10 | |||
10.1 | ✔constr. | ||
U2 = 90º - U1 [tan ⊥ radius] Z = 90º [∠in semi circle] S = 180º - (90º - U1) - 90º [sum of ∠s of a Δ] ∴S = U1 S = Y ∴U1 = Y | ✔ S/R | (5) |
10.2 | ||||
10.2.1 | A2 = x [∠sopp. = sides] | ✔ S/R | (5) | |
10.2.2 | S1 = T =x [proven in 10.2.1] | ✔ S | (2) | |
10.2.3 | AR = AT [line ║to one side of a ∆] | ✔ S/R | (4) | |
[16] |
QUESTION 11 | ||||
11.1 | A1 = C2 [tan chord theo.] | ✔ S | (4) | |
11.2 | Zˆ= Pˆ [∠sin same segment] | ✔ S/R | (3) | |
11.3 | B1 = D2 [ext. ∠of a cyclic quad.] | ✔ S | (5) | |
11.4 | ZA = RA [similar ∆s] | ✔ S/R ZA DC RA × ✔PC = ✔ S/R AZ AB RA × = ✔AC ✔ simplification | (5) | |
[17] | ||||
TOTAL: | 150 |