QUESTION 1 
1.1 A ✓✓ (2)
1.2 B ✓✓ (2)
1.3 D ✓✓ (2)
1.4 B ✓✓ (2)
1.5 C ✓✓ (2)
1.6 D ✓✓ (2)
1.7 B or/✓✓ (2)
1.8 A or V1✓✓ (2)
1.9 D ✓✓ (2)
1.10 D ✓✓ (2)
[20]

QUESTION 2 
2.1

Marking criteria

If any of the underlined key words/phrases in the correct context is omitted deduct 1 mark 

A body will remain in its state of rest or motion at constant velocity unless a non-zero resultant/net force/unbalanced force acts on it. ✓✓

OR
A body will remain in its state of rest or uniform motion in a straight line unless a (non-zero) resultant/net /unbalanced force acts on it. ✓✓ (2)

2.2

phsci p2 2.2

Accepted labels 
w Fg / Fw / weight / mg /196 N / gravitational force
 F FA / Applied force
 fk (kinetic) Friction  / Ff / f /18 N / Fw / fw
 N FN / Normal / 169,74 N

 

Notes

  • Mark awarded for label and arrow, but penalise only once if arrows are omitted
  • Do not penalise for length of arrows, drawing is not to scale..
  • Any other additional force(s) deduct 1 mark. 
  • If force(s) do not make contact with body deduct 1 mark.  

(4)

2.3

OPTION 1
Positive up the incline
Fnet = ma
F+ fk + wll = ma
F+ (-fk) + (-wll) = ma
F - (fk + wll) = ma
F - [18 + (20)(9,8)(sin30º)] ✓ = 0 ✓
F = 116 N ✓ 

NOTE
Fnet = 0
F = fk + wII
OPTION 2
Positive up the incline
Wnet = ΔEk ✓
FΔxcos0º + fΔxcos180º + wΔxcos120º ✓= 0 ✓
FΔx = 18Δx + (20)(9,8)Δx(0,5)
F = 116 N ✓

NOTE
Wnet = 0
FΔx = fΔx + wΔx(0,5)

(4)

2.4 POSITIVE MARKING FROM QUESTION 2.3 

116 N / f + w|| ✓Down the incline/opposite to direction of motion  helling af 

ACCEPT
Downwards/down (2)

2.5 POSITIVE MARKING FROM QUESTION 2.4 

OPTION 1

Up the incline positive
Fnet = ma
-116 = 20a ✓  
a = -5,80 m∙s-2

vf2 = vi2 + 2aΔx ✓
0 =(2)² + (2)(-5,8)Δx
Δx = 0,34 m ✓

vf = vi +Δt
0 = 2 + (-5,8)Δt
Δt = 0,34 s

OR
FnetΔt = m(vf – vi)
(-116)Δt = (20)(0 – 2)
Δt = 0,34 s
Δx = viΔt + ½ aΔt2
=(2)(0,34) + ½(-5,8) (0,34)2
= 0,34 m ✓ 

 vf = vi +Δt
0 = 2 + (-5,8)Δt
Δt = 0,34 s

OR
FnetΔt = m(vf – vi)
(-116)Δt = (20)(0–2)
Δt= 0,34 s

Δx = (vi + vf) Δt
            2
= (2 + 0)0,34
        2
= 0,34 m ✓





OPTION 1

Down the incline positive 
Fnet = ma
116 = 20a ✓
a = 5,80 m∙s-2 

vf2 = vi2 + 2aΔx ✓
0 =(-2)² + (2)(5,8)Δx
Δx = -0,34 m
Distance = 0,34 m ✓
vf = vi + aΔt
0 = -2 + (5,8)Δt
Δt = 0,34 s
OR
FnetΔt = m(vf – vi)
(116)Δt = (20)(0 – (-2))
Δt = 0,34 s

Δx = viΔt + ½ aΔt2 ✓
= (-2)(0,34) + ½(5,8)(0,34)²
= -0,34 m ✓
Distance = 0,34 m ✓ 

vf = vi + aΔt
0 = -2 + (5,8)Δt
Δt = 0,34 s

OR
FnetΔt = m(vf – vi)
(116)Δt =(20)(0-(-2))
Δt = 0,34 s

Δx = (v1 + vf)Δt
              2
= (-2 + 0)= -0,34 m ✓
        2                   
= -0.34
Distance = 0,34 m ✓ 

OPTION 2

Wnet = ΔEK
FnetΔxcosθ = ½m(vf2 - vi2)
(116)Δxcos180º ✓= ½(20)(0² – 2²) ✓
Δx = 0,34 m ✓

OPTION 3

Wnet = ΔEK
Wf + Wwll = ½mvf2 - ½mvi2
fΔxcosθ + (mgsin30º)Δxcosθ = ½m(vf2 - vi2)
(18)Δxcos180º + (20)(9,8)sin30ºΔxcos180º✓= ½(20)(02 – 22) ✓
Δx = 0,34 m ✓

OPTION 4

Wnet = ΔEK
Wf + Ww = ½mvf2 - ½mvi2
fΔxcosθ + mgΔxcos120° = ½m(vf2 - vi2)
(18)Δxcos180º + (20)(9,8)Δxcos120º✓= ½(20)(02 – 22) ✓
Δx = 0,34 m ✓

OPTION 5

Wnc = ΔEp + ΔEk
fΔxcosθ = mg(hf - hi) + ½m(vf2 – vi2)
18Δxcos180º✓ = 20(9,8)Δx + ½(20)(02 – 22) ✓
-18Δx = 196Δxsin30º - 40
Δx = 0,34 m ✓

(4)
[16]

QUESTION 3 
3.1 No

ANY ONE

  • Gravitational force is not the only force acting on the balloon. /There are other forces acting on the balloon. ✓
  • Its acceleration is not 9,8 m∙s-2/is zero.
  • It has constant velocity/no acceleration. (2)

3.2.1

OPTION 1
UPWARDS AS POSITIVE

vf2 = vi2 + 2aΔy ✓
(-62,68)² = vi² + 2(-9,8)(-200) ✓
vi = 2,96 m∙s-1
DOWNWARDS AS POSITIVE
vf2 = vi2 + 2aΔy ✓
(62,68)² = vi² + 2(9,8)(200) ✓
vi = -2,96 m∙s-1
= 2,96 m∙s-1 ✓ 

OPTION 2

(Emech/meg)200 m = (Emech/meg)bottom
(EP +EK)200 m = (EP +EK)bottom
(mgh + ½ mv2)200 m = (mgh + ½ mv2)bottom
m(9,8)(200) + ½m(v²) = 0 + ½m(62,68)² ✓
vi = 2,96 m∙s-1

NOTE
Mass may be omitted during substitution.

OPTION 3

Wnc = ΔEp + ΔEk
0 = mg(hf - hi)+ ½m(vf2 – vi2)
0 = m(9,8)(0 - 200) + ½m(62,68² – vi²) ✓
vi = 2,96 m∙s-1

NOTE
Mass may be omitted during substitution.

OPTION 4

Wnet = ΔEk
FnetΔxcos θ = ½m(vf2 – vi2)
mgΔxcos θ = ½m(vf2 – vi2)
m(9,8)(200) = + ½m(62,68² – vi²) ✓
vi = 2,96 m∙s-1 ✓

NOTE
Mass may be omitted during substitution.

(3)


3.2.2 POSITIVE MARKING FROM QUESTION

Marking criteria

  • Formula to calculate Δt of stone A ✓
  • Substitution to calculate Δt of stone A ✓
  • Final answer6,70 s ✓ Accept (6,69 to/tot 6,7)  
NOTE: The calculation of Δt for A might be split up into two parts.

OPTION 1
UPWARDS AS POSITIVE

vf = vi + aΔt ✓
-62,68 = 2,96 + (-9,8)Δt ✓
Δt = 6,70 s ✓ (6,698)

DOWNWARDS AS POSITIVE

vf = vi + aΔt ✓
62,68 = -2,96 + 9,8Δt ✓
Δt = 6,70 s ✓ (6,698)

OPTION  2
UPWARDS AS POSITIVE

Δy = viΔt + ½ aΔt2
-200 = (2,96)Δt + ½ (-9,8)Δt2
Δt = 6,70 s ✓ (6,697)

DOWNWARDS AS POSITIVE

Δy = viΔt + ½ aΔt2
200 = (-2,96) Δt + ½ (9,8)Δt2
Δt = 6,70 s ✓ (6,697)

OPTION 3
UPWARDS AS POSITIVE

Δy= (vi + vf)Δt
            2
-200 = (+296 + (-62.68)) Δt
                       2                      
Δt = 6,70 s ✓ (6,698)
DOWNWARDS AS POSITIVE
Δy = (vi + vf)Δt
            2
200 = (- 2,96 + 62,68) Δt✓
                   2

Δt = 6,70 s ✓ (6,698)

OPTION 4
UPWARDS AS POSITIVE

From 200 m upwards:
vf = vi + aΔt ✓
0 = 2,96 + (-9,8)Δt ✓
Δt = 0,3 s (0,302)
From max h downwards:

vf = vi + aΔt
-62,68 = 0 + (-9,8)Δt
Δt = 6,40 s (6,369)
tA = 0,3 + 6,40 = 6,7 s ✓

 DOWNWARDS AS POSITIVE
From 200 m upwards:

v = vi + aΔt ✓
0 = -2,96 + (9,8)Δt ✓
Δt = 0,3 s (0,302)
From max h downwards:

vf = vi + aΔt
62,68 = 0 + (9,8)Δt
Δt = 6,40 s (6,369)
tA = 0,3 + 6,40 = 6,7 s ✓
OPTION 5
UPWARDS AS POSITIVE


From 200 m upwards:

vf = vi + aΔt ✓
0 = 2,96 + (-9,8)Δt ✓
Δt = 0,3 s (0,302)
From 200 m downwards:

vf = vi + aΔt
-62,68 = -2,96 + (-9,8)Δt
Δt = 6,09 s (6,094)
tA = 2(0,3) + 6,09 = 6,69 s ✓
 DOWNWARDS AS POSITIVE
From 200 m upwards:

vf = vi + aΔt ✓
0 = -2,96 + (9,8)Δt ✓
Δt = 0,3 s (0,302)
From 200 m downwards:

vf = vi + aΔt
62,68 = 2,96 + (9,8)Δt
Δt = 6,09 s (6,094)
tA = 2(0,3) + 6,09 = 6,69 s ✓
 OPTION 6
UPWARDS AS POSITIVE


FnetΔt = m(vf – vi) ✓
mgΔt = m(vf – vi)
gΔt = vf - vi
(-9,8)Δt = (-62,68) – (2,96) ✓
Δt = 6,69 s ✓
 DOWNWARDS AS POSITIVE

FnetΔt = m(vf – vi) ✓
mgΔt = m(vf – vi)
gΔt = vf - vi
(9,8)Δt = 62,68 – (-2,96) ✓
Δt = 6,69 s ✓
(3)



3.2.3 POSITIVE MARKING FROM QUESTION 3.2.1 and QUESTION 3.2.2

Marking criteria

  • Formula to calculate Δy of stone B ✓
  • Substitution of t = 1,7 s ✓ (tA – 5)
  • Substitution to calculate Δy of stone B ✓
  • Substitution to calculate Δy of balloon ✓
  • Calculating distance between balloon and stone B ✓
  • Final answer (14,11 to/tot 14,16) 

OPTION 1
UPWARDS AS POSITIVE

Stone B
Δy = viΔt + ½ aΔt2
= 2,96(6,7 - 5)+ ½(-9,8)(6,7- 5)2
= -9,13 m (-9,09 to/tot -9,13)
Distance travelled by stone B: 9,13 m

Hot-air balloon
Δy = viΔt + ½ aΔt2
= 2,96(6,7 - 5) ✓ + 0
= 5,03 m
Distance travelled by hot-air balloon5,03 m
Distance between hot-air balloon and stone
B =           9,13 + 5,03 ✓           
= 14,16 m ✓ (14,11 - 14,16)

DOWNWARDS AS POSITIVE


Stone B
Δy = viΔt + ½ aΔt2
= -2,96(6,7 - 5) + ½(9,8)(6,7 - 5)2
= 9,13 m (9,09 to/tot 9,13)
Distance travelled by stone B: 9,13 m

Hot-air balloon
Δy = viΔt + ½ aΔt2
= -2,96(6,7 - 5) ✓ + 0
= -5,03 m
Distance travelled by hot-air balloon 5,03 m
Distance between hot-air balloon and stone
B=       9,13 + 5,03 ✓             
= 14,16 m ✓ (14,11 - 14,16) 

OPTION 2
UPWARDS AS POSITIVE

Stone B
vf = vi + aΔt
= 2,96 + (-9,8)(6,70 – 5)
= - 13,7 m∙s-1
vf2 = vi2 + 2aΔy ✓
(-13,7)² = (2,96)² + 2(-9,8)Δy ✓
Δy = -9,13 m
Distance travelled by stone B: 9,13 m

Hot-air balloon
Δy = viΔt + ½ aΔt2
= -2,96(6,70 - 5) + 0 ✓
= -5,03 m
Distance travelled by hot-air balloon/
5,03 m
Distance between hot-air balloon and

= 9,13+ 5,03 ✓
= 14,16 m ✓ (14,11 - 14,16)

 DOWNWARDS AS POSITIVE

Stone B
vf = vi + aΔt
= -2,96 + (9,8)(6,70 – 5)
= 13,7 m∙s-1
vf2 = vi2 + 2aΔy ✓
(13,7)² = (-2,96)2 + 2(9,8)Δy ✓
Δy = 9,13 m
Distance travelled by stone B: 9,13 m

Hot-air balloon
Δy = viΔt + ½ aΔt2
= -2,96(6,70 - 5) + 0 ✓
= -5,03 m
Distance travelled by hot-air balloon/

Distance between hot-air balloon and

= 9,13+ 5,03 ✓
= 14,16 m ✓ (14,11 - 14,16)

 OPTION 3
UPWARDS AS POSITIVE

Stone B
vf = vi + aΔt
= 2,96 + (-9,8)(6,70 – 5)
= - 13,7 m∙s-1
Δy = (vi + vf)Δt
            2
= (+ 2,96 ( 13,7) (6,70 – 5)
           2
= -9,13 m
Distance travelled by stone B: 9,13 m

Hot-air balloon
Δy =  viΔt + ½ aΔt2
= 2,96(6,70 - 5) + 0 ✓
= 5,03 m
Distance travelled by hot-air balloon/
5,03 m
Distance between hot-air balloon and
stone B
= 9,13 + 5,03 ✓
= 14,16 m ✓ (14,11 - 14,16)

 DOWNWARDS AS POSITIVE

Stone B
vf = vi + aΔt
= -2,96 + (9,8)(6,70 – 5)
= 13,7 m∙s-1
Δy = (vI + vf)Δt
              2
= (-2,96 + (13,7))  (6,70 – 5)
          2
= 9,13 m
Distance travelled by stone B: 9,13 m

Hot-air balloon

Δy = vI Δt + ½ aΔt2
= -2,96(6,70 - 5) + 0 ✓
= -5,03 m
Distance travelled by hot-air balloon/ : 5,03 m
Distance between hot-air balloon and
stone B= 9,13+ 5,03 ✓
= 14,16 m ✓ (14,11 - 14,16)

OPTION 4
UPWARDS POSITIVE

Stone B
vf = vi + aΔt
= 2,96 + (-9,8)(6,70 – 5)
= - 13,7 m∙s-1
Balloon's height after 5 s: 214,8 m

Emech)214,8 m = (Emech)1,7 s
(EP +EK)214,8 m = (EP +EK)1,7 s ✓
(mgh+½ mv2) = (mgh+½ mv2)1,7s
(9,8)(214,9)+½(2,96)2 =
(9,8)h+½(13,7)2
∴h = 205,67 m
Distance travelled by stone B/
214,8 – 205,67 = 9,13 m

Hot-air balloon
Δy = vIΔt + ½aΔt2
= 2,96(6,70 - 5) ✓ + 0
= 5,03 m
Distance travelled by hot-air balloon/
5,03 m
Distance between hot-air balloon and
stone B
B: 9,13 + 5,03 ✓ = 14,16 m ✓
(14,11 to 14,16)

 DOWNWARDS POSITIVE

Stone B
vf = vi + aΔt
= -2,96 + (9,8)(6,70 – 5)
= 13,7 m∙s-13
Balloon's height after 5 s: 214,8 m

(Emech)214,8 m = (Emech)1,7 s
(EP +EK)214,8 m = (EP +EK)1,7 s ✓
(mgh +½ mv2) = (mgh + ½ mv2)1,7s
(9,8)(214,8)+½(2,96)2 =
(9,8)h+½(13,7)2
∴h = 205,67 m
Distance travelled by stone B/

214,8 – 205,67 = 9,13 m
Hot-air balloon
Δy = vIΔt + ½aΔt2
= -2,96(6,70 - 5) ✓ + 0
= -5,03 m
Distance travelled by hot-air balloon/
5,03 m
Distance between hot-air balloon and
stone B9,13 + 5,03 ✓ = 14,16 m ✓
(14,11 to/tot 14,16)

OPTION 5
UPWARDS AS POSITIVE


Stone B
vf = vi + aΔt
= 2,96 + (-9,8)(6,70 – 5)
= - 13,7 m∙s-1
Wnet = ΔEK ✓
FnetΔxcosθ = ½mvf2 - ½mvi2= ½m(vf2- vi2)
(9,8)Δhcos 0° = ½(13,72 – 2,962) ✓
Δh = 9,13 m
Distance travelled by stone B/
9,13 m
Hot-air balloon
Δy = vIΔt + ½aΔt2
= 2,96(6,70 - 5) ✓ + 0
= 5,03 m
Distance travelled by hot-air balloon/
 5,03 m
Distance between hot-air balloon and
stone B/9,13 + 5,03 ✓ = 14,16 m ✓
(14,11 to/tot 14,16)
DOWNWARDS AS POSITIVE

Stone B
vf = vi + aΔt
= -2,96 + (9,8)(6,70 – 5)
= 13,7 m∙s-1
Wnet = ΔEK ✓
FnetΔxcosθ = ½mvf2 - ½mvi2= ½m(vf2- vi2)
(9,8)Δhcos0° = ½(13,72 – 2,962) ✓
Δh = 9,13 m
Distance travelled by stone B/
 9,13 m
Hot-air balloon
Δy = vIΔt + ½aΔt2
= -2,96(6,70 - 5) ✓ + 0
= -5,03 m
Distance travelled by hot-air balloon/
5,03 m
Distance between hot-air balloon and
stone B 9,13+ 5,03 ✓ = 14,16 m ✓
(14,11 to/tot 14,16)
OPTION 6
Using relative velocities

UPWARDS AS POSITIVE

Δy = vIΔt + ½aΔt2
= (2,96 - 2,96)(1,7) + ½(-9,8)(1,7)2
= -14,16 m
Distance between hot-air balloon and
stone B 14, 16m

DOWNWARDS AS POSITIVE

Δy = vIΔt + ½aΔt2
= (2,96 - 2,96)(1,7) + ½ (9,8)(1,7)2
= 14,16 m ✓

OPTION 7
UPWARDS AS POSITIVE


Δy = vIΔt + ½aΔt2
= (2,96)(1,7) + ½ (-9,8)(1,7)2 ✓
= -9,13 m

Distance travelled by stone B: 9,13 m
Δy = viΔt + ½ aΔt2
= (-2,96)(1,7) + ½(9,8)(1,7)2 ✓
= 9,13 m
Height of stone B from the ground = 200 + 14,8 – 9,13 = 205,63 m
Height of balloon from the ground = 200 + (6,7)(2,96)✓ = 219,83 m
Distance between B and the balloon = 219,83 – 205,63 ✓ = 14,16 m✓

(6)
3.3 

phsci p2 3.3

Criteria for graph   
Correct shape for stone A not starting from 0 m. ✓ 
Correct shape and initial position for hot-air balloon.  ✓ 
Gradient for hot-air balloon is higher than that of stone A until stone A reaches the maximum height  ✓
 Both graphs starting at the same position and ending at the same time.   ✓

(4)
[18]

QUESTION 4 
4.1

 Marking criteria
If any of the underlined key words/phrases in the correct context is omitted deduct
1 mark.
NOTE/
If “total” is omitted: minus 1 mark

A collision in which both the total momentum and total kinetic energy are conserved.✓✓
(2)
4.2

OPTION 1

ΣEKi = ΣEKf
½m1v21i + ½m2v2i2 = ½m1v2f1 + ½m2v2f2
½mxv2ix + ½myv 2 iy = ½mxv 2fx+ ½myv 2fy
½(10)(2)2 + ½(2)v2iy ✓ = 0 + 36 ✓
vy = ± 4 m∙s-1
vy = 4 m∙s-1  west✓ACCEPT/ left

OPTION 2

EKi = ½ mYvf2
36 = ½ (2) vf2
vf = 6 m∙s-1

Σpi = Σpf
m1v1i + m2v2i = m1v1f + m2v2f
mxvxi + myvyi = mXvxf + myvyf
(10)(2) + (2)vy ✓ = 0 + (2)(6)✓
vy = -4 m∙s-1
vy = 4 m∙s-1 ✓ west✓ ACCEPTleft/links

OPTION 3

EKi = ½ mYvf2
36 = ½ (2) vf2
vf = 6 m∙s-1

ΔpX = -ΔpY
mx(vXf - vXi) = - mY(vYf – vYi)
(10)(0 – 2)✓ = -(2)(6 – vY) ✓
vYf = -4 m∙s-1
vy = 4 m∙s-1 ✓west/wes✓ ACCEPT left
(5)

 


4.3 POSITIVE MARKING FROM QUESTION 4.2 FOR Y; OPTIONS 1, 3 and 6

OPTION 1
EAST POSITIVE:

For Y/Vir Y:
FnetΔt = Δp
FnetΔt = m(vf – vi)
Fnet (0,1) = 2{6 - (-4)} ✓
Fnet = 200 N ✓
WEST POSITIVE
For Y/Vir Y:
FnetΔt = Δp
FnetΔt = m(vf – vi)
Fnet (0,1) = 2(-6 - 4) ✓
Fnet = -200 N
Fnet = 200 N ✓
 OPTION 2
EAST POSITIVE:
For X/Vir X:
FnetΔt = Δp
FnetΔt = m(vf – vi)
Fnet (0,1) = 10(0 - 2) ✓
Fnet = -200 N
Fnet = 200 N ✓
 WEST POSITIVE
For X/Vir X:
FnetΔt = Δp
FnetΔt = m(vf – vi)
Fnet (0,1) = 10{0 - (-2)} ✓
Fnet = 200 N ✓
OPTION 3
EAST POSITIVE:

For Y/Vir Y:
vf = vi + aΔt
6 = -4 + a(0,1)
a = 100 m∙s-2
Fnet = ma ✓
= 2(100) ✓
= 200 N ✓
 WEST POSITIVE
For Y/Vir Y:
vf = vi + aΔt
-6 = 4 + a(0,1)
a = -100 m∙s-2
Fnet = ma ✓
= 2(-100) ✓
= -200 N
Fnet = 200 N ✓
 OPTION 4/OPSIE 4
EAST POSITIVE:

For X/Vir X:
vf = vi + aΔt
0 = 2 + a(0,1)
a = -20 m∙s-2
Fnet = ma ✓
= 10(-20) ✓
= -200 N
Fnet = 200 N ✓
 WEST POSITIVE
For X/Vir X:
vf = vi + aΔt
0 = -2 + a(0,1)
a = 20 m∙s-2
Fnet = ma ✓
= 10(20) ✓
Fnet = 200 N ✓

 OPTION 5
EAST POSITIVE

For X/Vir X:

vf = vi + aΔt
0 = 2 + a(0,1)
a = -20 m∙s-2

vf2 = vi2 + 2aΔx
0 = (2)2 + 2(-20)Δx 
Δx = 0,10 m

Δx =  (vf + vI)Δt
                2
(0 + 2)(0,1)
    2
  = 0,10 m

Wnet = ΔEk ✓
FnetΔxcosθ = ½ m(vf2 – vi2)
Fnet(0,1)cos180º = ½ (10)(02 – 22) ✓
Fnet = 200 N ✓ 

 OPTION 5
WEST POSITIVE

For X/Vir X:

vf = vi + aΔt
0 = -2 + a(0,1)
a = -20 m∙s-2

vf2 = vi2 + 2aΔx
0 = (-2)2 + 2(-20)Δx 
Δx = 0,10 m

Δx =  (vf + vI)Δt
                2
(0 + (-2))(0,1)
    2
  = 0,10 m

Wnet = ΔEk ✓
FnetΔxcosθ = ½ m(vf2 – vi2)
Fnet(0,1)cos180º = ½ (10)(02 – 22) ✓
Fnet = 200 N ✓ 

OPTION 6/OPSIE 6
EAST POSITIVE/OOS POSITIEF:

For X/Vir X:

vf = vi + aΔt
6 = -4 + a(0,1)
a = 100 m∙s-2

vf2 = vi2 + 2aΔx
(6)2 = (-4)2 + 2(100)Δx 
Δx = 0,10 m

Δx =  (vf + vI)Δt
                2
(6 - 4 )(0,1)
    2
  = 0,10 m

Wnet = ΔEk ✓
FnetΔxcosθ = ½ m(vf2 – vi2)
Fnet(0,1)cos180º = ½ (2)(62 – (-4)2) ✓
Fnet = 200 N ✓ 

  OPTION 6/OPSIE 6
WEST POSITIVE/WES POSITIEF:

For X/Vir X:

vf = vi + aΔt
-6 = 4 + a(0,1)
a = -100 m∙s-2

vf2 = vi2 + 2aΔx
(-6)2 = (-4)2 + 2(-100)Δx 
Δx = 0,10 m

Δx =  (vf + vI)Δt
                2
(-6 + 4)(0,1)
    2
  = 0,10 m

Wnet = ΔEk ✓
FnetΔxcosθ = ½ m(vf2 – vi2)
Fnet(0,1)cos180º = ½ (2)((-6)2 – (4)2) ✓
Fnet = 200 N ✓ 

 

(3)
[10]

QUESTION 5 

5.1

 Marking criteria
If any of the underlined key words/phrases in the correct context is omitted deduct
1 mark.
ACCEPT
For isolated system:
Closed system
Only conservative forces act on the system/
No external forces act on system


The total mechanical energy in an isolated system remains constant / thesame. ✓✓

OR
The sum of the kinetic and gravitational potential energies in an isolated
system remains constant/the same.

(2)
5.2

NOTE

  • Mass may be omitted during substitution.
  • If equations of motion are used. Max 1/3 for correct answer 

 OPTION 1

E P/mech top = E Q/mech ground 
(Ep + Ek)P/top = (Ep + Ek)Q/bottom
(mgh + ½mv2)P/top = (mgh + ½mv2)Q/bottom
(2)(9,8)(5) + 0 = 0 + ½(2)v 2f
vf = 9,90 m∙s-1 ✓ (9,899)

 OPTION 2

ΔEp + ΔEK = 0
(mghf - mghi) + ½m(vf2 – vi2) = 0
0 - (2)(9,8)(5) + ½(2)(vf2 – 0) ✓ = 0
vf = 9,90 m∙s-1 ✓ (9,899)

(3)
5.3 POSITIVE MARKING FROM QUESTION 5.2.

 OPTION 1

Wnet = ΔEK
Wf = ½mvf2 - ½mvi2
WN + Wf + Ww= ½mvf2 - ½mvi2
fΔxcosθ = ½m(vf2- vi2)
f(10)cos180° ✓= ½(2)(42 – 9,902) ✓
f = 8,2 N ✓

OPTION 2

Wnc = ΔEK + ΔEp
Wf = ½mvf2 - ½mvi2
WN + Wf = ½mvf2 - ½mvi2
fΔxcosθ = ½m(vf2 – vi2) + mg(hf – hi)
f(10)cos180° ✓= ½(2)(42 – 9,902) + 0 ✓
f = 8,2 N ✓
(4)



5.4

LEFT NEGATIVE

FnetΔt = Δp
FnetΔt = mvf - mvi
FnetΔt = m(vf - vi)
-14 = 2(vf – 4) ✓
vf = -3 m∙s-1

ΔEK = ½mvf2 - ½mvi2
= ½(2)[(-3)2 - 42] ✓
= -7 J ✓
ACCEPT
Impulse= mΔv 
Do not penalise if +3 is substituted.

 

ACCEPT
ΔEK = ½mvf2 - ½mvi2
= ½(2)[(0)2 – (-3)2] ✓
= -9 J ✓
Do not penalise if +3 is substituted.

RIGHT NEGATIVE
FnetΔt = Δp
FnetΔt = mvf - mvi
FnetΔt = m(vf - vi)
14 = 2(vf – (-4)) ✓
vf = 3 m∙s-1

ΔEK = ½mvf2 - ½mvi2
= ½(2)[(3)2 – (-4)2] ✓= -7 J ✓
ACCEPT
Impulse = mΔv
Do not penalise if +4 is substituted.

ACCEPT
ΔEK = ½mvf2 - ½mvi2
= ½(2)[(0)2 – (-3)2] ✓= -9 J ✓
Do not penalise if +3 is substituted.
(5)
[14]



QUESTION 6 

6.1
v = fλ ✓
340 = 680λ ✓
λ = 0,5 m ✓
(3)

6.2

Marking criteria

If any of the underlined key words/phrases in the correct context is omitted deduct 1
mark

The change in frequency/pitch/wavelength of the sound detected by a listener because the sound source and the listener have different velocities relative to the medium of sound propagation. ✓✓

OR
An (apparent) change in observed/detected frequency/pitch/wavelength, as a result of the relative motion between a source and an observer (listener). ✓✓
 (2)

6.3.1 Decreased (1)
6.3.2 Increased (1)

6.4 POSITIVE MARKING FROM QUESTION 6.1 

phsci p2 6.4

phsci p2 6.4.0
(5)
[12]

QUESTION 7 

7.1.1 Added ✓ (1)
7.1.2

 NOTE

Ignore signs of the charges

n =Q/qe 
= - 1,95 x10-6
   - 1,6 x10-19
= 1,22 x 1013 ✓ (1,21875 x 1013)
(3)

7.1.3

Marking criteria

If any of the underlined key words/phrases in the correct context is omitted deduct
1 mark 

The (electrostatic) force experienced per unit positive charge placed at that point.

NOTE(1 mark for:)
An electric field is a region of space in which an electric charge experiences a force. (2)

7.1.4
E =   kQ  
         r
= (9 x 10⁹)(1,95 x 10¯⁶)
            (0,5)2
= 7,02 x 104 N·C-1
(3)

7.2

OPTION 1
Marking criteria

  • Coulomb's Law formula
  • Correct substitution for Fq1 OR Fq2 into
    kQ₁Q₂
      r2
  • Correct substitution of 1,38 N for F(net) 
  • Subtracting (vector addition) electrostatic forces 
    elektrostatiese kragte ✓
  • Final answer 1,11 x 10-7 C ✓ (1,106 x 10-7 C) 
 FE(net) = Fq2 + Fq1
1,38 ✓= (+ kQ₁Q₂ )  + (- kQ₁Q₂)
                      r2                    r2
1,38 = (+ (9 x 10⁹)(1,95 x 10 )q₂) + (- (9 x 10⁹)(1,95 x 10 )q₂)
                         (0,03)                       (0,05)
q2 = 1,11 x 10-7 C ✓ (1,106 x 10-7 C)

OPTION 2
Marking criteria

  • E = kQ
           r2
  • Correct substitution of 7,08 x 105 N·C-1
  • Correct substitution for Eq1 OR Eq2 into 
    kQ₂
     r2
  • Subtracting electric fields
  • Final answer 1,11 x 10-7 C ✓ (1,106 x 10-7 C)

E= F/q =      1,38   
             1,95  x 10-6 
= 7,08 x 105 N∙C-1 (707692,30)

Enet = Eq2 + Eq1
7,08 x 105 = (+ kQ₂) + (- kQ₁)
                         r2                r2 
 = (+ (9 x 10⁹)q2) + (- (9 x 10⁹)q1)
           (0,03)2              (0,05)2
q2 = 1,11 x 10-7 C ✓ (1,106 x 10-7 C) 


(5)
[14]

QUESTION 8 
8.1.1 12 V ✓ (1)
8.1.2 0 (V) ✓ (1)
8.2

Marking criteria

If any of the underlined key words/phrases in the correct context is omitted deduct
1 mark 

The rate at which work is done or energy is expended/transferred.
(2)

8.3

OPTION 1

P = I2R ✓
5,76 = (1,22)R ✓
R = 4 Ω ✓ 

 OPTION 2
P = VI
5,76 = V(1,2)
V = 4,8 V
P = V2/R✓
5,76 =(4,8)2/R✓
R = 4 Ω ✓
V = IR ✓
4,8 = (1,2)R ✓
R = 4 Ω ✓

(3)

8.4 POSITIVE MARKING FROM QUESTION 8.3

OPTION 1
   1     1     1   
 Rp        R1       R2

   1     1     1   
  Rp       6       8,4

Rp = 3,5 Ω
RT = 3,5 + 4 ✓
= 7,5 Ω ✓ 

OPTION 2
Rp  =   R₁R₂   
            R₁+R₂

Rp =   (6)(8,4)✓  
          6 + 8,4
Rp = 3,5 Ω
RT = 3,5 + 4✓
= 7,5 Ω ✓ 

(3)

8.5 POSITIVE MARKING FROM QUESTION 8.3

CALCULATE VP
Marking criteria
Formula
V = IR ✓
Substitution to calculate Vp  

 CALCULATE V2
Marking criteria
Substitution to calculate Ibranch or ratio
of Rbranch
Substitution to calculate V2 /
Final Answer3 V✓

OPTION 1

Vp = IR
= (1,2)(3,5) ✓
= 4,2 V

  I = V/R
 4,2  
    8,4
= 0,5 A

V2 = IR ✓
= (0,5)(6) ✓
= 3 V ✓

OR
R2,4 : R6 = 2,4 : 6 ✓
= 2 : 5

V2,4 : V6 = 1,2 : 3 ✓✓
V2 = 3 V ✓

OPTION 2

Px = VI
5,76 = V(1,2)
Vx = 4,8 V
I6 Ω  8,4    x 1,2
           14,4
= 0,7 A

V6 Ω = IR
= (0,7)(6) ✓
= 4,2 V

 OPTION 3
ε = I(R + r)
12 = 1,2(7,5 + r)
r = 2,5 Ω
Vp = 12 – 1,2(2,5 + 4) ✓= 4,2 V

CALCULATION OF I8,4Ω AND V2

OPTION 4
I8,4Ω =  (6/14,4)(1,2)

OR
(3,5/8,4) (1,2)
= 0,5 A ✓✓

V2 = IR ✓
= (0,5)(6) ✓
= 3 V ✓ 

OPTION 5

Vx = IR
= (1,2)(4)
= 4,8 V

Vext = IRext
= (1,2)(7,5)
 = 9 V

Vp = 9 – 4,8✓ = 4,2 V

V8,4Ω = IR
4,2 = I(8,4)✓
I = 0,5 A

V2 = IR ✓
= (0,5)(6) ✓
= 3 V ✓

(5)

8.6
Decreases
Total resistance decreases.
Current increases.
Vinternal /Internal voltage (“lost volts”) increases ✓
Vexternal /external voltage decreases.

NOTE: Do not penalise if “total” is omitted. (4)
[19]

QUESTION 9 

9. 1 Slip rings

ACCEPT
Split ring/slip ring commutator  (1)

9. 2 Y to/na X ✓✓ (2)
9.3

 Marking criteria

If any of the underlined key words/phrases in the correct context is omitted deduct
1 mark.

The AC potential difference which dissipates the same amount of energy as an equivalent DC potential difference.

ACCEPT
The DC potential difference which dissipates the same amount of energy as an equivalent AC potential difference. (2)

9.4 

phsci p2 9.4

(4)

9.5 POSITIVE MARKING FROM QUESTION 9.4 

OPTION 1

Pave V²ᵣₘₛ
             R
70,712
     25
= 200,00 W ✓ (200 W)

OPTION 2
Pave =  VᵣₘₛIᵣₘₛ
= (70,71)(2,83) ✓
= 200,11 W ✓ 
OPTION 3
Pave I²ᵣₘₛ
= (2,83)2(25) ✓
= 200,22 W ✓ 

phsci p2 9.5

9.6|
phsci p2 9.6

 Marking criteria

  • 2 waves ✓
  • 2 golwe
  • Period of wave is 0,05 s ✓
  • Amplitude = 200 V ✓

(3)
[15]


QUESTION 10 
10.1

Marking criteria

If any of the underlined key words/phrases in the correct context is omitted deduct
1 mark 

The minimum frequency of light needed to eject electrons from a metal / surface. ✓✓(2)

10.2 Greater than ✓✓ (2)
10.3

OPTION 1

E = Wo + Ek(max)
fx = (        1         ) (23,01x10-19) ✓ + 10,40 x 1014
       6,63 x 10-34
= 4,51 x 1015 (Hz)✓ (45,1 x 1014 Hz ) 

OPTION 2

m = 1/h
  fₓ - 10,4 x 10¹⁴            1            
23,01 x 10-19 -  0     6,63 x 10-34
fx = 4,51 x 1015 (Hz) ✓(45,1 x 1014 Hz)

OPTION 3

E = Wo + Ek(max) ✓
hf = hf0 + Ek(max)
6,63 x 10‾³⁴fₓ ✓= (6,63 x 10‾³⁴)(10,40 x 10¹⁴)✓+ 23,01 x 10-19
fx = 4,51 x 1015 (Hz)✓ (45,1 x 1014 Hz )

(5)
10.4

10.4.1 No effect (1)
10.4.2 Increases(1)
10.4.3 No effect(1)

[12]
TOTAL 150

Last modified on Wednesday, 07 December 2022 07:41