PHYSICAL SCIENCE
PAPER ONE (P1)
GRADE 12 
NSC PAST PAPERS AND MEMOS
SEPTEMBER 2016

GENERAL GUIDELINES
1 CALCULATIONS

1.1 Marks will be awarded for: correct formula, correct substitution, correct answer  with unit. 
1.2 No marks will be awarded if an incorrect or inappropriate formula is used, even  though there are many relevant symbols and applicable substitutions. 
1.3 When an error is made during substitution into a correct formula, a mark will be  awarded for the correct formula and for the correct substitutions, but no further  marks will be given. 
1.4 If no formula is given, but all substitutions are correct, a candidate will forfeit  one mark.  
1.5 No penalisation if zero substitutions are omitted in calculations where correct formula/principle is correctly given. 
1.6 Mathematical manipulations and change of subject of appropriate formulae carry no  marks, but if a candidate starts off with the correct formula and then changes the  subject of the formula incorrectly, marks will be awarded for the formula and correct  substitutions. The mark for the incorrect numerical answer is forfeited. 
1.7 Marks are only awarded for a formula if a calculation has been attempted, i.e.  substitutions have been made or a numerical answer given. 
1.8 Marks can only be allocated for substitutions when values are substituted into  formulae and not when listed before a calculation starts. 
1.9 All calculations, when not specified in the question, must be done to a minimum of  two decimal places. 
1.10 If a final answer to a calculation is correct, full marks will not automatically be  awarded. Markers will always ensure that the correct/appropriate formula is used  and that workings, including substitutions, are correct. 
1.11 Questions where a series of calculations have to be made (e.g. a circuit diagram  question) do not necessarily always have to follow the same order. FULL MARKS  will be awarded provided it is a valid solution to the problem. However, any  calculation that will not bring the candidate closer to the answer than the original  data, will no count any marks. 

2 UNITS

2.1 Candidates will only be penalised once for the repeated use of an incorrect unit  within a question. 
2.2 Units are only required in the final answer to a calculation. 
2.3 Marks are only awarded for an answer, and not for a unit per se. Candidates will  therefore forfeit the mark allocated for the answer in each of the following situations:

    • Correct answer + wrong unit
    • Wrong answer + correct unit
    • Correct answer + no unit 

2.4 SI units must be used except in certain cases, e.g. V.m-1instead of N.C-1, and cm∙s-1 or km.h-1instead of m∙s-1 where the question warrants this. 

3 GENERAL

3.1 If one answer or calculation is required, but two are given by the candidate, only the  first one will be marked, irrespective of which one is correct. If two answers are  required, only the first two will be marked, etc. 
3.2 For marking purposes, alternative symbols (s, u, t etc) will also be accepted. 
3.3 Separate compound units with a multiplication dot, no a full stop, for example, m∙s-1. For marking purposes, m∙s-1 and m/s will also be accepted. 

4 POSITIVE MARKING
Positive marking regarding calculations will be followed in the following cases: 

4.1 Subquestion to subquestion: When a certain variable is calculated in one  subquestion (e.g. 3.1) and needs to be substituted in another (3.2 of 3.3), e.g. if the  answer for 3.1 is incorrect and is substituted correctly in 3.2 or 3.3, full marks are to  be awarded for the subsequent subquestions. 
4.2 A multistep question in a subquestion: If the candidate has to calculate, for  example, current in die first step and gets it wrong due to a substitution error, the  mark for the substitution and the final answer will be forfeited. 

5 NEGATIVE MARKING
Normally an incorrect answer cannot be correctly motivated if based on a conceptual  mistake. If the candidate is therefore required to motivate in QUESTION 3.2 the answer  given in QUESTION 3.1, and 3.1 is incorrect, no marks can be awarded for  QUESTION 3.2. However, if the answer for e.g. 3.1 is based on a calculation, the  motivation for the incorrect answer could be considered. 

MEMORANDUM

QUESTION 1
1.1 C ✓✓ (2)
1.2 D ✓✓ (2)
1.3 C ✓✓ (2)
1.4 C ✓✓ (2)
1.5 B ✓✓ (2)
1.6 B ✓✓ (2)
1.7 A ✓✓ (2)
1.8 C ✓✓ (2)
1.9 D ✓✓ (2)
1.10 B ✓✓(2)

[20] 

QUESTION 2
2.1 When a resultant/net force acts on an object, the object will accelerate in the  direction of the force at an acceleration that is directly proportional to the  force✓and inversely proportional to the mass of the object.✓ 

OR

The net force acting on an object is equal to the rate of change of  momentum✓✓ of the object (in direction of the force). (2 or 0)

2.2 202 memo(4)

Accepted labels/Aanvaarde byskrifte

FN/ Fnormal/Normal 

FT/Tension 

Fg /Fw/weight/mg/gravitational force

Ff 

f/ friction 

 

Notes: 

  • Mark awarded for label and arrow
  • Do not penalize for length of arrows since drawing is not to scale
  • Any other additional force(s) (-1 mark)
  • If force(s) do not make contact with the body (-1 mark)
  • If arrows are omitted but correctly labelled  (-1 mark) 

2.3 On 6 kg: 
Fnet = ma ✓ 
Fg + (-T) = ma 
(6 × 9,8) ✓ – T = 6 × a 
    58,8       – T=   6a 
 T = 58,8 – 6a (1) 

On 4 kg: 

 Fnet = ma ✓ 
(-f) + T = ma 
(-32,53) ✓ + T = 4 × a 
                    T = 32,53 + 4a (2) 

any one of the 2 above i.e (1) or (2)

(1) - (2): 0 = (58,8 – 6a) – (32,53 + 4a) ✓ 
 a = 2,63 m∙s-2 ✓ (6) 

2.4 Positive marking from QUESTION 2.3/ 
 fk = μkN ✓  or   fk = μkmg (any one)
32,53 = µk × 4 × 9,8 ✓ 
 µk = 0,83 ✓ (3) 

2.5 DECREASE ✓ 
At an angle of 30° the tension force will have a component in the vertical  direction ✓and the block will be slightly lifted up. The normal will decrease and  friction is directly proportional normal. ✓ 

[18] 

QUESTION 3
3.1 0 m∙s-1 ✓ (1)
3.2 g = 9,8 m/s2 ✓ downwards ✓ (2) 

3.3

3.3.1   (3) 

OPTION 1 (downward positive)
vf = vi + g∆t ✓ 
0 = (-18) + 9,8∆t ✓ 
∆t = 1,84 s ✓

OPTION 2 (upwards positive) 
vf2 = vi2 + g∆t ✓ 
0 = (18)2 + (-9,8)∆t ✓ 
∆t = 1,84 s ✓ 

3.3.2     (3)

OPTION 1 (Downwards is positive)
vf2 = vi2 + 2a∆y ✓ 
vf2 = (-18)2 +2 × (9,8)(-5) ✓
vf2  = 226 
vf = 15,033 m∙s-1 downward  ✓

OPTION 2 (Upwards is positive)
vf2 = vi2 + 2a∆y ✓ 
vf2 = (18)2 +2 × (-9,8)(5) ✓
vf2  = 226 
vf = 15,033 m∙s-1 downward ✓ 

3.3.3   

Downwards is positive Upwards is positive 

OPTION 1
∆y = vi ∆t + ½ a∆t2 ✓ 
 -5 ✓ = -18 ∆t + ½ (9,8)(∆t)2
- 5   = -18∆t + 4,9 (∆t)2  
∆t = 3,37s or  ∆t = 0,30s 
 ∴∆t = 3,37s ✓

OPTION  2
∆y = vi ∆t + ½ a∆t2 ✓ 
5 ✓= 18 ∆t + ½ (-9,8) (∆t)2
5     = 18∆t - 4,9 (∆t)2   
∆t = 3,37s or  ∆t = 0,30s 
 ∴∆t = 3,37s ✓

 

OPTION 3
Time taken to reach maximum  height from the ground.
vf = vi + g∆t  
0 = -18 + 9,8∆t  
∴∆t = 1,84 s✓ 
From the maximum height to the  top of the building
vf = vi + a∆t  
15,03 ✓= 0 + 9,8∆t 
∴∆t = 1,53 s✓ 
The total time from the point from  the ground to the top of the  building:
∆ttotal = 1,84 +1,53 = 3,37 s ✓ 

OPTION 4
Time taken to reach maximum height from the ground.
vf = vi + g∆t  
0 = 18 + -9,8∆t  
∴∆t = 1,84 s ✓ 
From the max height to the top of  the building
vf = vi + a∆t  
-15,03✓ = 0 + -9,8∆t 
∴∆t = 1,53 s✓ 
The total time from the point from  the ground to the top of the  building: 
∆ttotal = 1,84 +1,53 = 3,37 s ✓ 

(4)

 

OPTION 1
Velocity vs. time graph (Upwards is positive) 
3.4

 

OPTION 2
Velocity vs. time graph (Downwards is positive)
3.4 o2

 

Criteria to mark the graph

Marks

Correct shape (straight line)

Graph starts at v = 18 m∙s-1/-18 m∙s-1 and t = 0 s  

Graph cuts t-axis at 1,84 s at v = 0 m∙s-1 

Graph shows the ball bouncing with v = -15 m∙s-1/15,03 m∙s-1 at t = 3,37 s 

(4)
[17]

QUESTION 4 
4.1 The total mechanical energy in an isolated (closed) system ✓ remains  constant (is conserved). ✓ 
NOTE
If total or isolated/closed is omitted (max:1/2)  (2) 
4.2 Emech at A = Emech at B/Emeg by A = Emeg by B ✓ 
(mgh + ½ mv2)A = (mgh + ½ mv2)B 
m (9,8 × 0,5 + ½ × 02) ✓ = m (9,8 × 0 + ½ × v2) ✓ 
 4,9 = ½ v2 
 v = 3,13 m∙s-1 ✓ (4) 
4.3

4.3.1 The net/total work done on an object ✓ is equal to the change in the  object’s kinetic energy. ✓ 
OR 
The work done on an object by a resultant/net force is equal ✓ to the  change in the object’s kinetic energy. ✓  (2)
4.3.2 4.3.2 (3) 

4.3.3
Wnet = ∆ EK ✓ 
 Wnet = 0 
Wf + Wg//= 0 ✓ 
f. ∆x ∙ cos θ+ mg. 1/∆x ∆x ∙cos θ= 0 
14,7∙ d ∙cos 180°✓ + 3 × 9,8 (1/d cos 0° = 0  
-14,7d + 29,4 = 0 
 d = 2 m ✓ (5) 

4.4 REMAINS THE SAME ✓ (1)

[17]

QUESTION 5 
5.1 The total( linear) momentum of an isolated (closed) system ✓ remains  constant (is conserved) . ✓ 
OR
In a isolated (closed) system, the total(linear) momentum ✓ before collision is  equal to the total linear momentum after colllision. ✓  (2) 
5.2 EQUAL TO✓ (1) 
5.3 Consider LEFT as positive

∑pi = ∑pf ✓ Any one
(mm + mw)vi = mvf m + mvf w  
(80 + 50) × 0 ✓ = (80) vf + 50 × -4✓
 vf = 2,5 m∙s-1 left ✓ (4) 

5.4 (3) 

OPTION 1 
Fnet. ∆t = ∆p  ✓ 

OR (either one)

= m(vf – vi
 = 50(4-0) ✓ 
    200 N∙s 
 = 200 N∙s ✓to the right

OPTION 2 

Fnet. ∆t = ∆p ✓ 

OR (either one)

= m(vf – vi) 
 = 80(-2,5 - 0) ✓ 
 = -200 N∙s 
 = 200 N∙s ✓to the left

(3)

[10] 

QUESTION 6 
6.1 The (apparent) change in frequency/ pitch of the sound ✓ detected by a  listerner because the sound source and the listener have different velocities  relative to the medium of sound propagation. ✓ 
OR
An (apparent) change in (observed/detected) frequency/pitch/wavelength ✓ as a result of the relative motion between a source and the observer /listener. ✓ (2) 
6.2 As the police car is moving towards the woman, the wavelengths are  compressed ✓ and become more shorter resulting in waves compressed and  more waves will reach the listener per unit time, ✓ hence the frequency  increases.  (2)
6.3 51 question 6 hgfacsg(5) 

6.4

  • Determine whether arteries are clogged/narrowed ✓
    OR
  • Determine heartbeat of foetus ✓ (1) 

6.5 AWAY ✓ 
Light from the distant star has a lower frequency compared to that of  hydrogen. ✓ (Therefore the wavelength of the distant star is longer than the  hydrogen which shows that it is shifted towards red.)  (2)

[12] 

QUESTION  7 
7.1 The (electrostatic )force ✓ experienced per unit positive charge ✓( placed at a  point)  (2) 

7.2

EM = kQ 
           r
 = 9 × 109. QM✓ = 1 × 1013∙ QM (a)
        (0,03)
OR (either a or b)
EN = kQ          
          r2 
 = (9 × 109)(6 × 10-9 )      (b)
            (0,03)2 
 = 540 000∙ N∙C-1 
Enet = EM + (-EN ) ✓ 
5,2 × 105✔= 1x 10 13 ∙Qm – 540 000 ✓
5,2 × 105 + 540 000 = 1 × 1013∙QM 
Qm = 2 × 10-9 C east ✓ (7)

7.3

7.3.1  7.3.3(3) 

Criteria for sketch 

Marks

Correct shape

Correct direction

Field lines not crossing each other

✓ 

7.3.2 (a)   (4) 

OPTION 1 
Qnew = QM + QN ✓ = (2 × 10-9)+(-6 × 10-9) ✓ = -2 × 10-9 C  
                   2                              2  
ne- = Qf - Qi = (-2 × 10-9) - (2 × 10-9) ✓ 
              Qe              -1,6 x10-19  
= 2,5 × 1010 electrons  ✓

 

OPTION  2 
Qnew = QM + QN ✓ = (2 × 10-9) + (-6 × 10-9) ✓= -2 × 10-9 C  
                   2                       2  
ne- = Qf - Qi = (-2 × 10-9)-(-6 × 10-9) ✓ 
             Qe-            -1,6 × 10-19 
= 2,5 × 1010 electrons ✓ 

(b) 

F = kQ1 Q2 
           r2 
 = (9 × 109 )(2 × 10-9 )(2 × 10-9) ✓ 
                (0,02)2 
 = 9 × 10-5 N to the right ✓ 

(3) 
[19] 

QUESTION 8 
8.1 Electric motor (DC motor) ✓ (1) 
8.2 Electrical energy converted to mechanical energy ✓ (2) 
8.3

8.3.1 Increase the strength of the current ✓  (1)
8.3.2 Parallel ✓ (1) 

8.4

8.4.1 Maximum voltage✓
Accept: Vmax (1) 
8.4.2 

OPTION 1 

Vrms = Vmax = 330 ✓ = 233,35 V 
              √ 2     √ 2  
Vwgk = Vmax = 330 = 233,35 V 
           √ 2        √ 2  
Paverage = Vrms × Irm ✓ 
Pgem = Vwgk × Iwgk 
 = 233,35 × 12 ✓ 
 = 2800,2 W ✓

OPTION 2 

Paverage = Vmax × I rms✓ 
                  √ 2 
 Pgem = Vmax × I wgk  
              √ 2 
 Pave/Pgem = 330 ✓ × 12 ✓  
                     √ 2  
 = 2800,14 W ✓

For 8.4.2 accept range from Paverage from 2800,14 W to 2800,20 W 

(4) 
[10]

QUESTION  9 
9.1

9.1.1 Rext = R1 + R2 = 6 + 6 = 12 Ω 
 Vext = I R ✓ 
10,8 ✓ = I × 12 ✓ 
 I = 0,9 A ✓ (4) 
9.1.2 POSITIVE MARKING FROM QUESTION 9.1.1 (3) 

9.2 

9.2.1    (7) 

OPTION  1 
 V = Ir ✓ 
(12-10,8) = 0,9 × r
 1,2 = 0,9 r ✓ 
 r = 1,33 Ω ✓

OPTION  2 
 ε = I(R + r) ✓ 
12 = 0,9(12 + r) ✓
 r = 1,33 Ω ✓

 

OPTION  1 
Rp = R2 × R3+4 
         R2 + R3+4 
 = 6 × 5 ✓ 
    6 + 5
 = 2,73 Ω  
Vp = I R = 1,5 × 2,73✓ = 4,1 V 
Vs = V3 + Vbulb 
4,1 = IR3 + IRbulb 
4,1 = I (R3 + R2
4,1 = I (3 + 2) ✓ 
 I = 0,82 A 
P = I2 × R✓=(0,82)2×2✓=1,34 W ✓

OPTION 2 

= 1 + 1 =✓ 
   R1 R2 RP
1 + 1 = 1 ✓ 
    6    3   RP
 Rp = 2,73 Ω 
Vp = I Rp = 1,5 × 2,73✓= 4,1 V 
 Vs = V3 + V2 
 4,1 = IR3 + IR2 
 4,1 = I (R3 + R2
 4,1 = I (3 + 2) ✓ 
 I = 0,82 A 
P = I2 × R = (0,82)2 × 2✓= 1,34 W✓ 

9.2.2 Increases. ✓ External resistance decreases ✓ and current increases ✓  (3)

[17]

QUESTION 10 
10.1 50 × 10-19 Hz ✓ (1) 

10.2 The 45 × 10-19 Hz is less than the threshold frequency of light that can  eject/release electrons from the surface of the metal ✓✓  (2) 

10.3

hf = W0 + ½ mv
hf = Wo + EK ✓                                                                              ANY one
hf = hf0+ E
(6,63 × 10-34)(110 × 10-19)✓=(6,63 × 10-34)(50 × 10-19) ✓+( × 9,11 × 10-31.v2)✓
v = 9,35 × 10-11 m∙s-1 ✓ (5) 

10.4 STAYS THE SAME. ✓ 
Increase in the intensity increases the number of electrons emitted with the  same kinetic energy. ✓  (2)

[10] 
TOTAL 150

Last modified on Friday, 13 August 2021 13:14