PHYSICAL SCIENCES (CHEMISTRY) PAPER TWO (P2) GRADE 12 NSC EXAM PAPERS AND MEMOS NOVEMBER 2016
MEMORANDUM QUESTION 1 1.1 D ✓✓ (2) 1.2 C ✓✓ (2) 1.3 C ✓✓ (2) 1.4 D ✓✓ (2) 1.5 B ✓✓ (2) 1.6 D ✓✓ (2) 1.7 A ✓✓ (2) 1.8 A ✓✓ (2) 1.9 B ✓✓ (2) 1.10 B ✓✓ (2)
[20]
QUESTION 2 2.1
2.1.1 A OR/OF D ✓ (1) 2.1.2 B ✓ (1) 2.1.3 E ✓ (1) 2.1.4 D ✓ (1)
2.2
2.2.1 (3)
Marking criteria:
Five C atoms in longest chain. ✓ Two Br and one methyl substituents. ✓ Whole structure correct. ✓
2.2.2 (2)
Marking criteria:
Whole structure correct: 2/2 Only functional group correct: Max 1/2 Accept -OH as condensed. IF: More than one functional group 0/2
2.2.3 (2)
Marking criteria:
Whole structure correct: 2/2 Only functional group correct 1/2 IF: More than one functional group 0/2
2.3
2.3.1 Hydrogen (gas) ✓ (1) 2.3.2 Addition / Hydrogenation ✓ (1)
[13]
QUESTION 3 3.1 Compounds with the same molecular formula ✓ but different structural formulae.✓ (2) 3.2 Chain✓ (1) 3.3 From A to C:
Structure: Less branched / less compact / less spherical/longer chain length / larger surface area (over which intermolecular forces act).✓ Intermolecular forces: Stronger / more intermolecular forces / Van der Waals forces / London forces / dispersion forces. ✓ Energy: More energy needed to overcome or break intermolecular forces / Van der Waals forces. ✓ ORFrom C to A : Structure : More branched / more compact / more spherical / smaller surface area (over which intermolecular forces act).✓ Intermolecular forces: Weaker / less intermolecular forces / Van der Waals forces / London forces / dispersion forces. ✓ Energy: Less energy needed to overcome or break intermolecular forces / Van der Waals forces. ✓ (3) 3.4 A / 2,2-dimethylpropane ✓ → Lowest boiling point. ✓ (2) 3.5 C5 H12 + 8O2 ✓ ⭢ 5CO2 + 6H2 O ✓ Bal ✓ (3)
Notes:
Reactants ✓ Products ✓ Balancing ✓ Ignore double arrows and phases. Marking rule 6.3.10. If condensed structural formulae used:Max.2/3
[11]
QUESTION 4 4.1
4.1.1 High temperature / heat / high energy / high pressure ✓ (1) 4.1.2 C6H12 ✓ (1)
Accept: Condensed structural formula and structural formula. E.g : CH3 CH2 CH2 CH2 CHCH2
4.1.3 Alkenes ✓ (1)
4.2 X / C6H12 / Alkene / Hexene ✓ OPTION 1
X is an alkene / has a double bond / unsaturated. ✓ X can undergo addition. ✓ X will react without light / heat / is more reactive. ✓ OPTION 2
Butane is an alkane OR butane is saturated. ✓ Butane can only undergo substitution. ✓ Butane will only react in the presence of light / heat OR butane is less reactive. ✓ (4) 4.3
4.3.1 2-chloro✓butane ✓ (2) 4.3.2 Substitution / Hydrolysis ✓ (1) 4.3.3 (2)
Marking criteria:
Whole structure correct 2/2 Only functional group correct 1/2 IF: More than one functional group 0/2
4.3.4 Hydration ✓ (1)
[13]
QUESTION 5 5.1
5.1.1 The minimum energy needed for a reaction to take place. ✓✓ OR Minimum energy needed to form the activated complex(2) 5.1.2 (3)
Marking criteria:
Shape of curve for exothermic reaction as shown.
✓
Energy of activated complex shown as 75 kJ in line with the peak.
✓
Energy of products shown as − 196 kJ below the zero.
✓
IF: Wrong shape, e.g. straight line.
0 /3
5.1.3 Marking criteria
Dotted line (---) on graph in QUESTION 5.1.2 showing lower energy for activated complex. ✓ Dotted curve starts at/above energy of reactants and ends at/above energy of products on the inside of the original curve. ✓ (2) Note: Allocate marks only if curve for either exothermic or endothermic reaction drawn in QUESTION 5.1.2.
5.1.4
A catalyst provides an alternative pathway of lower activation energy. ✓ More molecules have sufficient / enough (kinetic) energy. ✓ OR More molecules have kinetic energy equal to or greater than the activation energy. More effective collisions per unit time / second. ✓ OR Rate / frequency of effective collisions increases. (3) 5.2
5.2 .1 Ave rate. tempo = ΔV Δt = 52 - 16 ✓ 40 - 10 =1,2(dm3 .s-1 )✓ (3)
Accept:
Volume range: 16 to 17 cm3 Answer range: 1,167 to 1,2 dm3 ∙s-1
5.2.2 (4)
Marking criteria :
V(O2 ) = 60 dm3 AND divide volume by 24 ✓ Use ratio: n(H2 O2 ) = 2n(O2 ) = 1:2 ✓ Use 34 g∙mol-1 in n = m or in ratio calculation. ✓ M Final answer: 170 g ✓ OPTION 1 n(O2 ) = V VM = 60 ✓ 24 = 2,5 mol n(H2 O2 ) = 2n(O2 ) = 2(2,5) ✓ = 5 mol n(H2 O2 ) = m M ∴5 = m 34 ✓ ∴m = 170 g ✓
OPTION 2 24 dm3 : 1 mol 60 dm3 : 2,5 mol ✓ n(H2 O2 ) = 2n(O2 ) = 2(2,5) ✓ = 5 mol 34 g ✓: 1 mol x : 5 mol x = 170 g ✓
OPTION 3
n(O2 ) = V VM = 60 ✓ 24 = 2,5 mol n(O2 ) = m M∴2,5 = m 32 ∴m = 80 g ✓ 2(34) g✓ H2 O2 .......32 g O2 x g H2 O2 ................ 80 g O2 m(H2 O2 ) = 170 g ✓
5.2.3 Equal to (1)
5.3
5.3.1 Q ✓ (1) 5.3.2 P ✓ (1)
[20]
QUESTION 6 6.1 The stage in a chemical reaction when the rate of forward reaction equals the rate of reverse reaction. ✓✓ (2 marks or no marks) OR The state where the concentrations / quantities of reactants and products remain constant. (2) 6.2
6.2.1 Remains the same✓ (1) 6.2.2 Decreases ✓
When the temperature is increased the reaction that will oppose this increase / decrease the temperature will be favoured. ✓ OR The forward reaction is exothermic. An increase in temperature favours the endothermic reaction. ✓ The reverse reaction is favoured. ✓ (4) 6.3
Marking criteria:
Vertical parallel lines show a sudden increase in rate of both forward and reverse reactions. ✓ Horisontal parallel lines showing a constant higher rate for both forward and reverse catalysed reactions after time t1. ✓
(2)
6.4 CALCULATIONS USING NUMBER OF MOLES
Marking criteria:
Use M(PbS) = 239 g∙mol-1 in n = m or in ratio calculation ✓ M Use ratio: n(H2 S)equil = n(PbS) ✓ n(H2 S)formed = n(H2 S)equilibrium ✓ USING ratio: H2 : H2 S = 1 : 1 ✓ n(H2 )equilibrium = n(H2 )initia – n(H2 )formed ✓ Divide equilibrium n(H2 S) & n(H2 ) by 2 dm3 . ✓ Correct Kc expression ✓ Substitution of concentrations into Kc expression. ✓ Final answer: 0,07 ✓ NB.: If not rounded: 0,067
OPTION 1 n(PbS) = m = 2,39 = 0,01 mol M 239 ✓ n(H2 S)equilibrium = n(PbS) ✓ = 0,01 mol
H2 H2 S Initial quantity (mol) 0,16 0 Chnage (mol) 0,01 0,01✔ ratio✔ Quantity at equilibrium (mol) 0,15 ✔ 0,01 Equlibrium concentration (mol.dm-3 ) 0,075 0,005 divide by 2✔
Kc = [H2 S ] ✔ [H2 ] = 0,005 ✔ 0,075 =0,067 = 0,07 ✔
No Kc expression, correct substitution: Max : 8/9 Wrong Kc expression: Max : 6/9 IF: [S] = 1 in Kc = [H2 S ] [H2 ][S ] No mark for Kc expression, but continue marking substitution and answer
OPTION 2 n(PbS) = m = 2,39 = 0,01 mol M 239 ✓ n(H2 S)reacted = n(PbS) ✓ = 0,01 mol = n(H2 S)equilibrium n(H2 S)formed = n(H2 S)equilibrium – n(H2 S)initial = 0,01 – 0 ✓ = 0,01 mol n(H2 )reacted = n(H2 S)formed ✓ = 0,01 mol n(H2 )equilibrium = n(H2 )initial - n(H2 )reacted = 0,16 - 0,01 ✓ = 0,15 mol c(H2 ) = n c(H2 S) = n V V = 0,15 = 0,01 2 2 = 0, 075 mol.dm-3 = 0,005 mol.dm-3
Kc = [H2 S ] ✔ [H2 ] = 0,005 ✔ 0,075 =0,067 = 0,07 ✔
No Kc expression, correct substitution: Max : 8/9 Wrong Kc expression: Max : 6/9 IF: [S] = 1 in Kc = [H2 S ] [H2 ][S] No mark for Kc expression, but continue marking substitution and answer
OPTION 3
H2 H2 S Initial quantity (mol) 0,16 0 Change (mol) x x✔ ratio✔ Quantity at equilibrium (mol) 0,16 - x ✔ x Equlibrium concentration (mol.dm-3 ) 0,16 - x 2 x 2 divide by 2✔
n(PbS) = m = 2,39 = 0,01 mol M 239 ✓ n(H2 S)equilibrium = n(PbS) ✔ ∴ x = 0,01 mol [H2 ]equilibrium = 0,16 - 0,01 = 0,075 mol.dm-3 2 [H2 S]equilibrium = 0,01 = 0,005 mol.dm-3 2
Kc = [H2 S ] ✔ [H2 ] = 0,005 ✔ 0,075 =0,067 = 0,07 ✔
No Kc expression, correct substitution: Max : 8/9 Wrong Kc expression: Max : 6/9 IF: [S] = 1 in Kc = [H2 S ] [H2 ] [S] No mark for Kc expression, but continue marking substitution and answer
CALCULATIONS USING CONCENTRATION
Marking criteria:
Use M(PbS) = 239 g∙mol-1 in n = m or in ratio calculation ✓ Use ratio: n(H2 S)equil = n(PbS) ✓ Divide equilibrium n(H2 S)equil & n(H2 )initial by 2 dm3 . ✓ (H2 S) formed = (H2 S)equal ✓ USING ratio: H2 :H2 S =1 :1 [H2 ]equilibrium = [H2 ]initial – [H2 ]formed ✓ Correct Kc expression ✓ Substitution of concentrations into Kc expression. ✓ Final answer: 0,07 ✓ Note: If not rounded: 0,067
OPTION 4
n(PbS) = m = 2,39 = 0,01 mol M 239 ✓ n(H2 S)equilibrium = n(PbS) ✓ = 0,01 mol
H2 H2 S Initia concentration ( mol.dm-3 ) 0,16 / 2 = 0,08 0 Change in concentration ( mol.dm-3 ) 0,05 0,05✔ ratio✔ Equlibrium concentration (mol.dm-3 ) 0,075 0,005 divide by 2✔
Kc = [H2 S ] ✔ [H2 ] = 0,005 ✔ 0,075 =0,067 = 0,07 ✔
No Kc expression, correct substitution: Max : 8/9 Wrong Kc expression: Max : 6/9 IF: [S] = 1 in Kc = [H2 S ] [H2 ][S ] No mark for Kc expression, but continue marking substitution and answer
OPTION 5
n(PbS) = m = 2,39 = 0,01 mol M 239 ✓ n(H2 S)equilibrium = n(PbS) ✓ = 0,01 mol [H2 S]equilibrium = n V = 0.01 2 = 0,005 mol.dm-3 [H2 ]initial = n V = 0.16 2 = 0,008 mol.dm-3 [H2 S] formed = [H2 S] equilibrium - [H2S] initial = 0,005 - 0 ✓ = 0,005 mol.dm-3 [H2 ]reacted = [H2 S]formed = 0,005 mol[ H2 ]equilibrium= [H2 ]initial- [H2 ]reacted = 0,008 - 0,005= 0,075 mol
Kc = [H2 S ] ✔ [H2 ] = 0,005 ✔ 0,075 =0,067 = 0,07 ✔
No Kc expression, correct substitution: Max : 8/9 Wrong Kc expression: Max : 6/9 IF: [S] = 1 in Kc = [H2 S ] [H2 ][S ] No mark for Kc expression, but continue marking substitution and answer
(9) [18]
QUESTION 7 7.1
7.1.1 Hydrolysis is the reaction (of a salt) with water. ✓✓ (2 or 0) Accept: A chemical reaction in which water is a reactant. (2)
7.1.2 Smaller than (7) ✓ NH4 + + H2 O ✓ → NH3 + H3 O+ ✓ Accept: NH4 Cℓ + H2 O → NH3 + H3 O+ + Cℓ- NH4 + → NH3 + H+ ((3)
Note:
Mark equation independently of first answer. If incorrect balancing: Max 2/3
7.2
Marking criteria for equation:
Reactants ✓ Products ✓ Ignore double arrows and phases. Marking rule 6.3.10
7.2.1 (2)
Marking guidelines:
Substitution of 98 g∙mol-1 . ✓ Final answer: 0,08 mol ✓ Note: If not rounded: (0,075 mol) OPTION 1
n = m = 7,35 = 0,08 mol M 98 ✓ (0,075 mol)
OPTION 2 98 g ✓: 1 mol 7,35 :0,08 mol ✓
OPTION 3
n = m = 7,35 MV 98 × 0,5✓ = 0,15 mol∙dm-3 n = cV = 0,15 x 0,5 = 0,08 mol ✓
7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1.
OPTION 1
pH = −log[H3 O+ ] ✓ 1,3 ✓ = −log[H3 O+ ] [H3 O+ ] = 0,05 mol∙dm-3 [H2 SO4 ] = ½[H3 O+ ] = ½ x 0,05 ✓ = 0,025 mol∙dm-3 (0,03)
n(H2 SO4 )ex = cV ✓ = 0,025 x 0,5 ✓ = 0,0125 mol (0,02) n(H2 SO4 )react = 0,075 – 0,0125 ✓ [the highlighted part is from Q7.2.1] = 0,0625 mol (0,06) n(NaOH) = 2n(H2 SO4 ) = 2 x 0,0625 ✓ = 0,125 mol (0,12)
OR EITHER⇒⇒⇒ ⇓ ⇓ ⇓
n(NaOH) = m = 0,125 = m M 40 ✓
m = 5 g ✓ (4,8 g)
Marking guidelines:
Formula: pH = −log[H3 O+ ] ✓ Substitution of 1,3 ✓ Use [H2 SO4 ] : [H3 O+ ] = 1 : 2 ✓ Formula: c = n ✓ V Multiply by 0,5 dm3 ✓ Subtract ninitial – nexcess ✓ Use n(NaOH) : n(H2 SO4 ) = 2:1 ✓ Substitution of 40 g∙mol-1 ✓ Final answer: m = 5 g ✓ Range: 4,8 – 5,6 g
1 mol : 40 g ✓ 0,125 mol : 5 g ✓
OPTION 2
pH = −log[H3 O+ ] ✓ 1,3 ✓ = −log[H3 O+ ] [H3 O+ ] = 0,05 mol∙dm-3 n(H3 O+ )ex = cV ✓ = (0,05)(0,5) ✓ = 0,025 mol (0,03) n(H3 O+ )in = 2n(H2 SO4 ) [the highlighted part is from Q7.2.1] = 0,075 x 2 ✓ = 0,15 mol (0,16) n(H3 O+ )react = 0,15 – 0,025 ✓ = 0,125 mol (0,13) n(NaOH) = n(H3O+ ) ✓ = 0,125 mol (0,13)
OR EITHER⇒⇒⇒ ⇓ ⇓ ⇓
n(NaOH) = m = 0,125 = m M 40 ✓
m = 5 g ✓ (5,2 g)
Marking guidelines:
Formula: pH = −log[H3 O+ ] ✓ Substitution of 1,3 ✓ Formula/Formule: c = n ✓ V Multiply by 0,5 dm3 ✓ Use n(H2SO4) : n(H3 O+ ) = 1 : 2 ✓ Subtract ninitial – nexcess ✓ Use n(H3 O+ ) : n(NaOH) = 1 : 1 ✓ Substitution of 40 g∙mol-1 ✓ Final answer: m = 5 g ✓ Range: 4,8 – 5,6 g
1 mol : 40 g ✓ 0,125 mol : 5 g ✓
OPTION 3 [H2 S]ein = n = 0,075 V 0,5[the highlighted part is from Q7.2.1] = 0,15 mol∙dm-3 (0,16) [H3 O+]in = 2[H2 SO4 ] = 2 x 0,15 ✓ = 0,3 mol∙dm-3 (0,32) pH = −log[H3 O+ ] ✓ 1,3 ✓ = -log[H3 O+ ] [H3 O+ ] = 0,05 mol∙dm-3 [H3 O+ ]react = 0,3 – 0,05✓ = 0,25 mol∙dm-3 (0,27) [H2 SO4 ]react = ½[H3 O+ ] = ½ x 0,25 = 0,125 mol∙dm-3 (0,14)
Marking guidelines :
Formula: c = n ✓ V Divide by 0,5 dm3 ✓ Use [H3 O+ ] : [H2 SO4 ] = 2:1 ✓ Formula: pH = −log[H3 O+ ] ✓ Substitution of 1,3 ✓ Subtract [H3 O+ ]initial – [H3 O+ ]excess ✓ Use n(NaOH) : n(H2 SO4 ) = 2:1 ✓ OR Use [H2 SO4 ] : [NaOH] = 1 : 2 ✓ Substitution of 40 g∙mol-1 ✓ Final answer: m = 5 g ✓ Range: 4,8 – 5,6 g n(H2 SO4 )react = cV = (0,125)(0,5) = 0,0625 mol (0,07) n(NaOH) = 2n(H2 SO4 ) = 2 x 0,0625 ✓ = 0,125 mol (0,14)
n(NaOH) = m M 0,125 = m 40✓ m = 5 g ✓ (5,6 g)
[H2 SO4 ] : [NaOH] 1 : 2 0,125 : 0,25 ✓ (0,28)
m = cMV = 0,25 x 40 ✓x 0,5 = 5 g ✓ (5,6 g)
(9) [16]
QUESTION 8
8.1
8.1.1 AgNO3 / Silver nitrate ✓ (1) 8.1.2 Ni → Ni2+ + 2e- ✓✓ (2)
Marking guidelines:
Ni ⇌ Ni2+ + 2e- ½ Ni2+ + 2e- ⇌ Ni 0 /2 2 Ni2+ + 2e- → Ni ½ Ni2+ + 2e- ← Ni 0 /2 Ignore if charge omitted on electron. If charge (+) omitted on Ni2+ : Max: 21 Example: Ni → Ni2 + 2e- ✓
8.1.3 Ni + 2Ag+ ✓ → Ni2+ + 2Ag ✓ Bal ✓ OR Ni + 2 AgNO3 → Ni(NO3 )2 + 2Ag (3)
Notes:
Reactants ✓ Products ✓ Balancing: ✓ Ignore double arrows. Marking rule 6.3.10/
8.2
8.2.1 Ni ✓ - Ni is a stronger reducing agent. / Ni has a higher reducing ability. / Ni is the anode. / Ni loses electrons. / Ni is oxidised. ✓ (2) ✓ ✓ ✓
8.2.2 Ni (s) | Ni2+ (aq) || Ag+ (aq) | Ag(s) OR Ni (s) | Ni2+ (1 mol∙dm-3 ) || Ag+ (1 mol∙dm-3 ) | Ag(s) Accept: Ni | Ni2+ || Ag+ | Ag (3)
8.2.3 (4)
OPTION 1: Eθ cel l = Eθ reduction −Eθ oxidation ✓ = 0,80 ✓ – (-0,27) ✓ = 1,07 V ✓
Notes
Accept any other correct formula from the data sheet Any other formula using unconventional abbreviations, e.g. E°cell = E°OA - E°RA followed by correct substitutions: ¾ OPTION 2 Ag+ + e- ⭢ Ag✓ Eθ = 0,80 V ✓ Ni ⭢ Ni2+ + 2e- Eθ = +0,27 V ✓ Ag+ + Ni ⭢ Ag + Ni2+ Eθ = +1,07 V ✓
8.2.4 Increases ✓ (1)
[16]
QUESTION 9 9.1 Endothermic ✓ (1) 9.2 Anode ✓ - Connected to the positive terminal of the battery. ✓ (2)
9.3
9.3.1 Chlorine (gas) / Cℓ2 ✓ (1) 9.3.2 Hydrogen (gas) /H2 ✓ (1) 9.3.3 2H2 O(ℓ) + 2e- ⭢ H2 (g) + 2OH- (aq) ✓✓ (2) Ignore phases
Notes H2 (g) + 2OH- (aq) ← 2H2 O(ℓ) + 2e- 2/2 2H2 O(ℓ) + 2e- ⇌ H2 (g) + 2OH- (aq) 1/2 H2 (g) + 2OH- (aq) ⇌ 2H2 O(ℓ) + 2e- 0/2 2H2 O(ℓ) + 2e- ← H2 (g) + 2OH- (aq) 0/2
9.4 Basic ✓ - OR Alkaline OH− (ions) / NaOH / Strong base forms.✓ (2)
[9]
QUESTION 10 10.1
10.1.1 Haber (process) ✓ (1) 10.1.2 Contact process / Catalytic oxidation of SO2 ✓ (1) 10.1.3 Sulphur trioxide / SO3 ✓ (1) 10.1.4 SO3 + H2 SO4 ✓ ⭢ H2 S2 O7 ✓ Bal. ✓ (3)
Notes
Reactants ✓ Products ✓ Balancing ✓ Ignore ⇌ and phases Marking rule 6.3.10
10.1.5 H2 SO4 ✓ + 2NH3 ✓ ⭢ (NH4 )2 SO4 ✓ Bal. ✓ (4)
Notes
Reactants ✓✓ Products ✓ Balancing ✓ Ignorer ⇌ and phases Marking rule 6.3.10
10.2 (4)
Marking guidelines:
Calculate the mass of fertiliser. Add %N and %P OR mass N and mass P. Subtraction: 100 – (%N + %P) OR m(fertiliser) – [m(N) + m(P)] OR %fertiliser – [%N + %P] Final answer: 8:1:5
OPTION 1:
m(fertiliser) = 36 /100 x 20 = 7,2 kg %N = 4,11 x 100 7,2 = 57,08% %P = 0,51 x 100 7,2 = 7,08% %K = 100 – ✓ (57,08 + 7,08) ✓ = 35,84% 57,08 : 7,08 : 35,84 8 : 1 : 5 ✓
OPTION 2:
m(fertiliser) = 36 /100 x 20 ✓ = 7,2 kg m(K) = 7,2 – ✓ (4,11 + 0,51) ✓ = 2,58 kg 4,11 : 0,51 : 2,58 8 : 1 : 5 ✓
OPTION 3
%N =4,11 x 100 = 20,55% ✓ 20 %P =0,51 x 100 = 2,55% 20 %K = 36 –✓ (20,55 + 2,55) ✓ = 12,9%
20,55 : 2,55 : 12,9 8 : 1 : 5 ✓
[14] TOTAL: 150