GRADE 12 MATHEMATICS
PAPER 1
NSC PAST PAPERS AND MEMOS
FEBRUARY/MARCH 2017
NOTE:
QUESTION 1 | ||
1.1.1 | (x - 3)(x + 1) = 0 | ✔ answer (2) |
1.1.2 | √x3 = 512 | ✔x3/2
✔ squaring both sides |
1.1.3 | x(x − 4) < 0 | ✔critical values |
1.2.1 | x2 - 5x + 2 = 0 x = 5 ± √(-5)2 - 4(1)(2) 2(1) x = 5 ± √17 2 x = 0,44 or x = 4,56 OR x2 - 5x + 2 = 0 x2 - 5x = -2 x2 - 5x + [-5/2]2 = -2 + [-5/4]2 [x - 5/2]2 = 17/4 x = 5 + √17 or x = 5 - √17 2 2 x = 0,44 or x = 4,56 | ✔ subst correct formula
✔[x - 5/2]2 = 17/4 |
1.2.2 | f(x) = x2 - 5x + 2 x2 - 5x + 2 = c x2 - 5x + 2 - c = 0 b2 - 4ac < 0 (-5)2 - 4(1)(2 - c) < 0 25 - 8 + 4c < 0 4c < -17 c < -17 4 | ✔ standard form |
1.3 | x = 2y + 2 x = 2y + 2 | ✔ substitution ✔ simplification ✔ standard form ✔ factors ✔ y = 0 or y = - 4
✔ substitution |
1.4 | S = 6 x2 + 2 For S to be a maximum the denominator needs to be at a minimum. Minimum of x2 + 2 is 2 Maximum of S = 6 x2 + 2 = 6 2 = 3 | ✔ Minimum of x2 + 2 is 2 |
[22] | ||
QUESTION 2 | ||
2.1 | For geometric: OR b = ±√[-¼ ][-1] | ✔ b = - 1
|
2.2 | -¼ ; ½ ; -1 ; ........ OR T19 = ar18 | ✔r = – 2 ✔r = – 2 |
2.3 | The series is: -¼; ½ ; -1 ; 2 ; -4 ; 8 ; .............. The new positive term series: ½; 2 ; 8 ; 32 ; 128 ; .................. a = ½ r = 4 OR | ✔ a = ½ ✔ r = 4 ✔ ✔ correct formula (4) |
2.4 | No, the series is not convergent r = 4 and for convergence –1 < r < 1 | ✔no ✔reason (2) |
[12] | ||
QUESTION 3 | ||
3.1.1 | 24 | ✔24 (1) |
3.1.2 |
OR Tn = T1 + (n - 1)d1 + (n - 1)(n - 2)d2 | ✔a = 3/2
✔formula |
3.1.3 | 3n2 - 9n + 9 = 3249 2 2 3n2 - 9n + 18 = 6498 3n2 - 9n + 6480 = 0 n2 - 3n + 2160 = 0 (n + 45)(n - 48) = 0 n ≠ −45 or n = 48 (4) | ✔ equating general term to 3249 |
3.2 | -1 ; 2sin3x ; 5 ; ............ 2sin3x + 1 = 5 - 2sin3x 4sin3x = 4 sin3x = 1 3x = 90º x = 30º | ✔ 2sin3x + 1 = 5 - 2sin3x ✔ sin3x = 1 ✔ 3x = 90º ✔ x = 30º (4) |
[13] | ||
QUESTION 4 | ||
4.1 | U(1 ; 0) | ✔(1; 0) (1) |
4.2 | x =1 | ✔x =1 |
4.3 | 2 + 1 = 0 x - 1 2 = -x + 1 x = -1 T(-1; 0) | ✔ y = 0 |
4.4 | f(x) = log5X h : x = log5 y y = 5x | ✔ change x and y |
4.5 | y = 0 | ✔ answer (1) |
4.6 | V(√2 + 1; √2 + 1) OR x = 2 + 1 OR x - 1 = 2 | ✔✔2 +1 ✔✔2 +1 (4)
✔ x = 2 + 1 ✔ subs into correct formula
✔ x = √2 + 1
|
4.7 | T' (3; 2) | ✔x = 3 |
[14] | ||
QUESTION 5 | ||
5.1.1 | C(0 ; –3) | ✔ C(0 ; –3) (1) |
5.1.2 | f(x) = x2 - 2x -3 (x - 3)(x + 1) = 0 x = -1 or x = 3 AB = 3 - (-1) AB = 4 units | ✔ factors |
5.1.3 | x = 2 or 2x - 2 = 0 or x = -1 + 3 2(1) 2 = 1 y = (1)2 - 2(1) - 3 = -4 D(1 ; -4) | ✔x = 1 |
5.1.4 | C(0 ; -3) D(1 ; -4) Average gradient = -4 + 3 or -3 + 4 1 - 0 0 - 1 = -1 | ✔ -4 + 3 or -3 + 4 1 - 0 0 - 1 ✔ -1 |
5.1.5 | OC = OB = 3 OR tan β = mg | ✔equal lengths |
5.1.6 | − 4 < k < −3 OR (–4 ; –3) | ✔–4 |
5.1.7 | f'(x) . f''(x) > 0 (2x - 2) . 2 > 0 2x − 2 > 0 x > 1 | ✔2x − 2 |
5.2 | f(x) = a(x - 1)(x - 5) 4 = a(3 - 1)(3 - 5) 4 = -4a a = -1 f(x) = -x2 + 6x - 5 | TP ✔ x – intercepts |
[22] | ||
QUESTION 6 | ||
6.1.1 | A = 150 000(1 - 0,2)2 = R96 000 | ✔ n = 2 |
6.1.2 | 150 000(1 - 0,2)n = 49152 OR 150 000(1 - 0,2)n = 49152 n = log 0.8 1024 | ✔150 000(1 - 0,2)n = 49152
✔150 000(1 - 0,2)n = 49152 |
6.1.3 | R280 000 - R49 152 = R230 848 x = R9 383,26 | ✔ R230 848 |
6.2 | = R791 837,43 Lerato qualifies for a loan of R791 000 under the given conditions | ✔ i = 0,11
|
[16] | ||
QUESTION 7 | ||
7.1 | f(x + h) = (x + h)2 - 5 = (x2 + 2xh + h2) - 5 = x2 + 2xh + h2 - 5 f(x + h) - f(x) = x2 + 2xh + h2 - 5 - (x2 - 5) = 2xh + h2 OR |
✔simplifying
✔formula |
7.2 | g(x) = 5x2 - 2x x3 = 5x2 - 2x-2 g'(x) = 10x + 4x-3 =10x + 4 x3 | ✔ 5x2 - 2x-2 ✔ 10x ✔ 4x-3 or 4 (3) x3 |
7.3 | h(x) = ax2 , x > 0 h-1 : x = ay2 y > 0 y = √x/a h-1 (8) = √8/a h'(x) = 2ax h' (4) = 2a(4) = 8a √8/a = 8a 64a2 = 8/a a3 = 1/8 a = 1/2 | ✔ y = √x/a ✔ √8/a ✔ h' (4) = 8a ✔ √8/a = 8a ✔ a3 = 1/8 ✔ a = 1/2 (6) |
[14] | ||
QUESTION 8 | ||
8.1 | f'(x) = 0 6x2 - 10x + 4 = 0 3x2 - 5x + 2 = 0 (3x - 2) (x - 1) = 0 x = 2/3 or x = 1 y = 2[2/3 ]3 - 5[2/3 ]2 + 4[2/3 ] y = 2(1)3 - 5(1)2 + 4(1) y = 28/27 or y = 1 Turning points are : [ 2 ; 28 ] and [1 : 1] [ 3 27] | ✔ derivative |
8.2 | 2x3 - 5x2 + 4x = 0 | ✔ x(2x2 - 5x + 4) = 0 ✔ x = 0 ✔ 5 ± √-7 (3) 4 ✔ x(2x2 - 5x + 4) = 0 ✔ x = 0 ✔ b2 - 4ac < 0 (3) |
8.3 | f(x) = 2x3 - 5x2 + 4x x(2x2 - 5x + 4) = 0 | ✔(0 ; 0) |
8.4 | f(x) = 2x3 - 5x2 + 4x OR x = b x > 5/6 OR Point of inflection: x = 2/3 + 1 | ✔ 12x - 10
✔ x = - (-5)
✔ x = 2/3 + 1 |
[14] | ||
QUESTION 9 | ||
9 | Length of one side of the square =x/4 Length of the rectangle 2L + x + x/4 = 6 L = 6 - 5x/4 2 = 24 - 5x 8 A = [x]2 + x[24 - 5x] [4] 4 8 = x2 + 24x - 5x2 16 32 = 24x - 3x2 32 A = 24x - 3x2 32 For minimum area dA = 0 dx dA = 24 - 6x dx 32 6x = 24 x = 4 | ✔ x/4
|
[7] | ||
QUESTION 10 | ||
10.1.1 | P(S and T) = P(S) + P(T) 1/6 = [1/4] × P(T) P(T) = 2/3 | ✔P(S and T) = P(S)×P(T) |
10.1.2 | P(S or T) = P(S) + P(S and T) = [1/4] + [2/3] - [1/6] =¾ | ✔ [1/4] + [2/3] - [1/6] |
10.2.1 | 5! | ✔ 5 |
10.2.2 | 55 | ✔55 or 3 125 (1) |
10.3 | n(E) = 5! ×2! × 2! n(S) = 7! P(E) = 5! ×2! × 2! 7! = 2 21 | ✔5! |
[11] | ||
QUESTION 11 | ||
11 |
| ✔ 0,3 |
[5] | ||
[150] |